bpso对红外光谱数据进行波段筛选的代码
时间: 2023-08-22 19:03:28 浏览: 108
红外代码 可以参考
以下是使用BP神经网络和粒子群优化算法(PSO)对红外光谱数据进行波段筛选的示例代码:
```python
import numpy as np
from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import StandardScaler
# 读取数据
data = np.loadtxt('data.txt') # 数据文件包含n个样本,每个样本有m个波段数据
# 划分训练集和测试集
x_train, x_test, y_train, y_test = train_test_split(data[:, :-1], data[:, -1], test_size=0.2, random_state=42)
# 数据标准化
scaler = StandardScaler()
x_train = scaler.fit_transform(x_train)
x_test = scaler.transform(x_test)
# 定义BP神经网络模型
model = MLPClassifier(hidden_layer_sizes=(10,), activation='logistic', solver='lbfgs', max_iter=1000, random_state=42)
# 粒子群优化算法(PSO)函数
def pso(feature_num):
# feature_num: 选择的特征数
# 生成初始粒子群
num_particles = 10 # 粒子数
num_features = x_train.shape[1] # 特征数
particles = np.random.randint(0, 2, size=(num_particles, num_features))
particles[0] = np.ones(num_features) # 第一个粒子全部特征选中
velocities = np.zeros((num_particles, num_features))
# 定义PSO算法参数
w = 0.7 # 惯性权重
c1 = 1.5 # 自我认知权重
c2 = 1.5 # 社会认知权重
num_iterations = 100 # 迭代次数
# 迭代寻优
best_particle = None
best_fitness = 0
for i in range(num_iterations):
for j in range(num_particles):
# 计算适应度
selected_features = particles[j].astype(bool) # 选中的特征
model.fit(x_train[:, selected_features], y_train)
y_pred = model.predict(x_test[:, selected_features])
fitness = accuracy_score(y_test, y_pred)
# 更新粒子最佳位置
if fitness > best_fitness:
best_fitness = fitness
best_particle = particles[j].copy()
# 更新粒子速度和位置
velocities[j] = w * velocities[j] + c1 * np.random.rand(num_features) * (particles[j] - particles[j]) + c2 * np.random.rand(num_features) * (best_particle - particles[j])
particles[j] = np.where(velocities[j] > np.random.rand(num_features), 1, 0)
# 返回选择的特征
selected_features = best_particle.astype(bool)
selected_indices = np.where(selected_features)[0]
return selected_indices[:feature_num]
# 使用PSO进行特征选择
selected_indices = pso(5) # 选择5个特征
# 输出选择的特征
print('Selected Features:', selected_indices)
```
上述代码中,`data.txt` 是包含训练数据的文件,每行是一个样本,最后一列是该样本的类别。在 `pso` 函数中,通过粒子群优化算法(PSO)选择出适应度最高的特征子集。在本示例中,我们选择了5个特征。最后输出选择的特征的下标。
阅读全文