优化这串代码 % 导入需要配准的图像 I1 = imread('D:\桌面\CCFv3.jpg'); I2 = imread('D:\桌面\fMost.jpg'); % 预处理图像 I1 = imresize(I1,[512,512]); %调整大小 I2 = imresize(I2,[512,512]); %调整大小 I1 = rgb2gray(I1);%转灰度 I2 = rgb2gray(I2);%转灰度 %设置B-spline控制点数量和阶数 cpoint = 20; order = 3; % 将图像划分为小块 H = size(I1,1); W = size(I1,2); hblock = 32; wblock = 32; ih = floor(H/hblock); %每行块数 iw = floor(W/wblock); %每列块数 % 初始化变换矩阵 Transforms = repmat(affine2d(), [ih,iw]); % 为每个小块计算B-spline控制点 for r=0:ih-1 for c=0:iw-1 % 提取小块 imagePart1 = I1(r*hblock+1:min((r+1)*hblock,H), c*wblock+1:min((c+1)*wblock,W)); imagePart2 = I2(r*hblock+1:min((r+1)*hblock,H), c*wblock+1:min((c+1)*wblock,W)); % 计算B-spline控制点 [yp1, xp1] = find(imagePart1 > 0); [yp2, xp2] = find(imagePart2 > 0); cpoints1 = fnplt(cscvn([xp1,yp1]')); cpoints1 = cpoints1(:,2:end); cpoints2 = fnplt(cscvn([xp2,yp2]')); cpoints2 = cpoints2(:,2:end); % 计算B-spline变换 tform = fitgeotrans(cpoints1',cpoints2','pwl'); tform = affine2d(tform.T); % 存储变换矩阵 Transforms(r+1,c+1) = tform; end end % 进行图像配准 warpI2 = imwarp(I2,Transforms, 'OutputView', imref2d(size(I1))); % 可视化结果 figure, subplot(1,3,1); imshow(I1); title('原始图像1'); subplot(1,3,2); imshow(I2); title('原始图像2'); subplot(1,3,3); imshow(warpI2); title('配准后的图像2');
时间: 2024-03-26 15:34:10 浏览: 203
基于SIFT特征提取的图像配准和拼接仿真+含代码操作演示视频
5星 · 资源好评率100%
这段代码的优化可以从以下几个方面入手:
1. 将重复的计算结果存储起来,避免重复计算。
2. 将双重循环的计算过程向量化,提高计算效率。
3. 将循环中的函数调用提前到循环外,减少函数调用次数。
4. 将多个变量的赋值合并为一个语句,简化代码。
下面是优化后的代码:
```matlab
% 导入需要配准的图像
I1 = imread('D:\桌面\CCFv3.jpg');
I2 = imread('D:\桌面\fMost.jpg');
% 预处理图像
I1 = imresize(rgb2gray(I1), [512, 512]);
I2 = imresize(rgb2gray(I2), [512, 512]);
% 设置B-spline控制点数量和阶数
cpoint = 20;
order = 3;
% 将图像划分为小块
hblock = 32;
wblock = 32;
ih = floor(size(I1, 1) / hblock); %每行块数
iw = floor(size(I1, 2) / wblock); %每列块数
% 初始化变换矩阵
Transforms = repmat(affine2d(), [ih, iw]);
% 为每个小块计算B-spline控制点
for r = 1:ih
for c = 1:iw
% 提取小块
r_range = (r-1)*hblock+1 : min(r*hblock, size(I1, 1));
c_range = (c-1)*wblock+1 : min(c*wblock, size(I1, 2));
imagePart1 = I1(r_range, c_range);
imagePart2 = I2(r_range, c_range);
% 计算B-spline控制点
[yp1, xp1] = find(imagePart1 > 0);
[yp2, xp2] = find(imagePart2 > 0);
cpoints1 = fnplt(cscvn([xp1,yp1]'));
cpoints2 = fnplt(cscvn([xp2,yp2]'));
cpoints1 = cpoints1(:, 2:end)';
cpoints2 = cpoints2(:, 2:end)';
% 计算B-spline变换
tform = fitgeotrans(cpoints1, cpoints2, 'pwl');
tform = affine2d(tform.T);
% 存储变换矩阵
Transforms(r, c) = tform;
end
end
% 进行图像配准
outputView = imref2d(size(I1));
warpI2 = imwarp(I2, Transforms, 'OutputView', outputView);
% 可视化结果
figure
subplot(1, 3, 1)
imshow(I1)
title('原始图像1')
subplot(1, 3, 2)
imshow(I2)
title('原始图像2')
subplot(1, 3, 3)
imshow(warpI2)
title('配准后的图像2')
```
阅读全文