clc clear syms t1 t2 t3 %θ1、θ2、θ3 a2 = [4 0 0];a3 = [3 0 0]; T01 = rotz(t1); T12 = transl(a2)*trotz(t2); T23 = transl(a3)*trotz(t3);
时间: 2024-03-21 19:40:19 浏览: 98
根据您提供的代码,您正在使用符号变量`t1`、`t2`和`t3`来定义3个转换矩阵`T01`、`T12`和`T23`。这段代码中没有出现`rotz`函数报错的问题,不过根据您之前提供的错误信息,我猜测您可能是在其他地方使用了符号变量而导致了错误,建议您检查一下您的代码。
此外,您在定义变量`a2`和`a3`时使用了方括号,这会将它们定义为行向量,而不是列向量。在Matlab中,通常使用方括号来表示行向量,如果您需要定义列向量,可以使用分号来分隔元素。例如,将`a2`和`a3`定义为列向量可以使用以下代码:
```
a2 = [4; 0; 0];
a3 = [3; 0; 0];
```
希望这些信息对您有所帮助。
相关问题
clc; clear; m=500000; %总质量 co=4500; cv=150; %%%%%%%%%%chen ca=1; g=9.8; center1=-1.5:0.1:1.5; center=[center1;center1]; % 神经网络中心 width=2; % 神经网络宽度 % rbfc=3000*ones(31,1); % 神经网络加权矩阵 % kesi=0.008; kesi0=0.01; %dd=500; deta0=0.001; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%调节参数 ro=1; rv=1; ra=1; rm=1; r2=1; gama=1*eye(31); roo=1; ww=1; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%初值 z1=0.1; z2=0.1*10^6; v_max=0.5*10^6; % v_max=0.7*10^6; v_min=-0.5*10^6; aa=1;
这段代码是一个MATLAB程序的开头部分,主要包括了清空变量、设置初始值、定义一些常数等内容。具体来说:
- clc和clear语句用于清空命令窗口和工作空间中的变量。
- m表示系统的总质量,co、cv和ca分别表示系统的热容、容积和压缩系数。
- g表示重力加速度,center1是一个向量,表示神经网络中心的初始值。
- center是一个2行31列的矩阵,表示神经网络中心的初始值。
- width表示神经网络的宽度,rbfc是一个31行1列的向量,表示神经网络加权矩阵的初始值。
- kesi、kesi0、deta0等变量是一些调节参数,用于控制程序的运行效果。
- ro、rv、ra、rm、r2、gama、roo、ww等变量也是一些常数,用于计算系统的物理量。
- z1、z2等变量是一些初始值,用于进行仿真计算。
- v_max和v_min分别表示系统速度的最大值和最小值,aa是一个常数,用于计算系统的加速度。
需要注意的是,这段代码只是程序的开头部分,具体的仿真计算过程可能在后续的代码中实现。
clear clc tic %%%%%%%%产生输入序列%%%%%%%% x=[1,1,0,1,1,0,1,0,1]; %initial value a1=-1.5; a2=0.7; b1=1.0; b2=0.5; c1=-0.8; c2=0.6; num=8000; %n为脉冲数目 M=[]; %存放M序列,其作为输入 for i=1:num temp=xor(x(4),x(9)); M(i)=x(9); for j=9:-1:2 x(j)=x(j-1); end x(1)=temp; end u=M; %%%%%%%%产生噪声序列%%%%%%%% v=randn(1,num); e(1)=0; e(2)=0; for i=3:num e(i)=v(i)+c1*v(i-1)+c2*v(i-2); end %%%%%%%%产生观测序列%%%%%%%% z=zeros(num,1); z(1)=0; z(2)=0; for i=3:num z(i)=-a1*z(i-1)-a2*z(i-2)+b1*u(i-1)+b2*u(i-2)+e(i); end %%%%%%%%设置初始值%%%%%%%% P=100*eye(4); Theta=zeros(4,num); x(1)=0; x(2)=0; for i=3:num H=[-z(i-1);-z(i-2);u(i-1);u(i-2)]; H_SA=[-x(i-1);-x(i-2);u(i-1);u(i-2)]; K=P*H_SA/(1+H'*P*H_SA); Theta(:,i)=Theta(:,i-1)+K*(z(i)-H'*Theta(:,i-1)); P=(eye(4)-K*H')*P; x(i)=H_SA'*Theta(:,i); end figure(1) plot(Theta(1,:),'b'); hold on plot(Theta(2,:),'r'); plot(Theta(3,:),'k'); plot(Theta(4,:),'g'); legend('a1','a2','b1','b2'); hold off
根据你提供的代码,这段代码是用MATLAB实现了一个基于最小二乘法的参数估计算法。该算法用于估计线性系统的参数,通过观测序列和输入序列来求解系统的参数。
代码的主要步骤如下:
1. 生成输入序列 M,这里使用了一个带有反馈的移位寄存器来产生 M 序列。
2. 生成噪声序列 v,使用 randn 函数生成均值为0、方差为1的高斯噪声。
3. 生成观测序列 z,通过线性系统的差分方程来计算 z 的值。
4. 设置初始值 P 和 Theta,P 是协方差矩阵,Theta 是参数估计值。
5. 进行递推计算,通过递推公式来更新参数估计值和协方差矩阵。
6. 绘制参数估计结果的图像。
最后,通过绘制图像可以看到参数 a1、a2、b1、b2 的估计结果。
请注意,这段代码仅是一个例子,具体应用中可能需要根据实际情况进行修改和调整。
阅读全文