Cell In[4], line 5 b1 = nn.Parameter(torch.zeros(num_hiddens, require_grad=True)) ^ SyntaxError: invalid syntax
时间: 2024-05-01 20:21:38 浏览: 159
这个错误提示是因为 `require_grad` 应该是 `requires_grad`。所以你需要修改这一行代码为:
```python
b1 = nn.Parameter(torch.zeros(num_hiddens, requires_grad=True))
```
这样就可以解决这个语法错误了。
相关问题
RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn class CustomLoss(nn.Module): def __init__(self): super(CustomLoss, self).__init__() def forward(self, predicted_tokens, target_tokens): # 设置predicted_tokens为需要梯度计算的张量 scores = torch.zeros_like(target_tokens, dtype=torch.float32) for i in range(target_tokens.size(1)): target_token = target_tokens[:, i] max_score = torch.max(torch.eq(predicted_tokens, target_token.unsqueeze(dim=1)).float(), dim=1)[0] scores[:, i] = max_score loss = 1 - torch.mean(scores) return loss class QABasedOnAttentionModel(nn.Module): def __init__(self, vocab_size, embed_size, hidden_size, topk): super(QABasedOnAttentionModel, self).__init__() self.topk = topk self.embedding = nn.Embedding(vocab_size, embed_size) self.encoder = nn.GRU(embed_size, hidden_size, batch_first=True) self.attention = nn.Linear(hidden_size, 1) self.decoder = nn.Linear(hidden_size, topk) def forward(self, input_question, input_answer): question_embed = self.embedding(input_question) answer_embed = self.embedding(input_answer) _, question_hidden = self.encoder(question_embed) answer_outputs, _ = self.encoder(answer_embed, question_hidden) attention_weights = self.attention(answer_outputs).squeeze(dim=-1) attention_weights = torch.softmax(attention_weights, dim=1) context_vector = torch.bmm(attention_weights.unsqueeze(dim=1), answer_outputs).squeeze(dim=1) logits = self.decoder(context_vector) return logits
根据你提供的代码,我看不到明显的问题。这个错误通常发生在尝试对不需要梯度的张量进行反向传播时。
如果你确定错误出现在这段代码中,那么可能是在调用`backward()`方法之前,还有其他地方出现了问题。请确保没有在其他地方对该张量进行了操作,使其不再需要梯度。你可以检查一下是否在模型的其他部分或损失函数中使用了`detach()`或`data`等操作,这些操作都会导致张量不再需要梯度。
另外,你可以尝试将`CustomLoss`类中的`forward()`方法的参数也设置为需要梯度计算的张量:
```python
def forward(self, predicted_tokens, target_tokens):
predicted_tokens.requires_grad_()
...
```
这样可以确保`predicted_tokens`是需要梯度计算的张量。
如果以上方法仍然没有解决问题,那么可能是其他部分的代码引起了错误。请提供更多的上下文或详细的错误信息,以便我能更好地帮助你解决问题。
Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn : class CustomLoss(nn.Module): def __init__(self): super(CustomLoss, self).__init__() def forward(self, predicted_tokens, target_tokens): # 设置允许梯度计算 predicted_tokens.requires_grad = True target_tokens.requires_grad = True scores = torch.zeros_like(target_tokens, dtype=torch.float32) for i in range(target_tokens.size(1)): target_token = target_tokens[:, i] max_score = torch.max(torch.eq(predicted_tokens, target_token.unsqueeze(dim=1)).float(), dim=1)[0] scores[:, i] = max_score loss = 1 - torch.mean(scores) return loss
这个错误通常是因为在计算损失函数时,某个张量没有设置梯度计算,但在反向传播时却尝试计算其梯度。为了解决这个问题,您可以将张量的`requires_grad`属性设置为`True`,以确保其梯度可以被计算。
请修改您的代码如下:
```python
class CustomLoss(nn.Module):
def __init__(self):
super(CustomLoss, self).__init__()
def forward(self, predicted_tokens, target_tokens):
# 设置允许梯度计算
predicted_tokens = predicted_tokens.requires_grad_()
target_tokens = target_tokens.requires_grad_()
scores = torch.zeros_like(target_tokens, dtype=torch.float32)
for i in range(target_tokens.size(1)):
target_token = target_tokens[:, i]
max_score = torch.max(torch.eq(predicted_tokens, target_token.unsqueeze(dim=1)).float(), dim=1)[0]
scores[:, i] = max_score
loss = 1 - torch.mean(scores)
return loss
```
在上述代码中,我们使用了`.requires_grad_()`方法来将`predicted_tokens`和`target_tokens`的`requires_grad`属性设置为`True`,以确保它们的梯度可以被计算。这样,在反向传播时就不会出现上述错误。
希望这个修改能够解决您遇到的问题!如果还有其他问题,请随时提问。
阅读全文