flow_transforms怎么安装

时间: 2024-06-08 12:12:09 浏览: 58
flow_transforms是FastFlow框架中的一个模块,可以通过以下步骤进行安装: 1. 确保已经安装了FastFlow框架,可以通过以下命令安装: ``` sudo apt-get update sudo apt-get install libff-dev ``` 2. 安装flow_transforms模块,可以通过以下命令进行安装: ``` git clone https://github.com/fastflow/ffflow_transforms.git cd ffflow_transforms/ make sudo make install ``` 安装完成后,就可以在FastFlow框架中使用flow_transforms模块了。
相关问题

帮我把这段代码从tensorflow框架改成pytorch框架: import tensorflow as tf import os import numpy as np import matplotlib.pyplot as plt os.environ["CUDA_VISIBLE_DEVICES"] = "0" base_dir = 'E:/direction/datasetsall/' train_dir = os.path.join(base_dir, 'train_img/') validation_dir = os.path.join(base_dir, 'val_img/') train_cats_dir = os.path.join(train_dir, 'down') train_dogs_dir = os.path.join(train_dir, 'up') validation_cats_dir = os.path.join(validation_dir, 'down') validation_dogs_dir = os.path.join(validation_dir, 'up') batch_size = 64 epochs = 50 IMG_HEIGHT = 128 IMG_WIDTH = 128 num_cats_tr = len(os.listdir(train_cats_dir)) num_dogs_tr = len(os.listdir(train_dogs_dir)) num_cats_val = len(os.listdir(validation_cats_dir)) num_dogs_val = len(os.listdir(validation_dogs_dir)) total_train = num_cats_tr + num_dogs_tr total_val = num_cats_val + num_dogs_val train_image_generator = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1. / 255) validation_image_generator = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1. / 255) train_data_gen = train_image_generator.flow_from_directory(batch_size=batch_size, directory=train_dir, shuffle=True, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='categorical') val_data_gen = validation_image_generator.flow_from_directory(batch_size=batch_size, directory=validation_dir, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='categorical') sample_training_images, _ = next(train_data_gen) model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(16, 3, padding='same', activation='relu', input_shape=(IMG_HEIGHT, IMG_WIDTH, 3)), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Conv2D(32, 3, padding='same', activation='relu'), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Conv2D(64, 3, padding='same', activation='relu'), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Flatten(), tf.keras.layers.Dense(256, activation='relu'), tf.keras.layers.Dense(2, activation='softmax') ]) model.compile(optimizer='adam', loss=tf.keras.losses.BinaryCrossentropy(from_logits=True), metrics=['accuracy']) model.summary() history = model.fit_generator( train_data_gen, steps_per_epoch=total_train // batch_size, epochs=epochs, validation_data=val_data_gen, validation_steps=total_val // batch_size ) # 可视化训练结果 acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs_range = range(epochs) model.save("./model/timo_classification_128_maxPool2D_dense256.h5")

import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader from torchvision import datasets, transforms import os BATCH_SIZE = 64 EPOCHS = 50 IMG_HEIGHT = 128 IMG_WIDTH = 128 train_transforms = transforms.Compose([ transforms.Resize((IMG_HEIGHT,IMG_WIDTH)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.5,0.5,0.5], [0.5,0.5,0.5])]) test_transforms = transforms.Compose([ transforms.Resize((IMG_HEIGHT,IMG_WIDTH)), transforms.ToTensor(), transforms.Normalize([0.5,0.5,0.5], [0.5,0.5,0.5])]) base_dir = 'E:/direction/datasetsall/' train_dir = os.path.join(base_dir, 'train_img/') validation_dir = os.path.join(base_dir, 'val_img/') train_cats_dir = os.path.join(train_dir, 'down') train_dogs_dir = os.path.join(train_dir, 'up') validation_cats_dir = os.path.join(validation_dir, 'down') validation_dogs_dir = os.path.join(validation_dir, 'up') train_dataset = datasets.ImageFolder(train_dir, transform=train_transforms) train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True) test_dataset = datasets.ImageFolder(validation_dir, transform=test_transforms) test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=False) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = nn.Sequential( nn.Conv2d(3, 16, 3, padding=1), nn.ReLU(), nn.MaxPool2d(2), nn.Conv2d(16, 32, 3, padding=1), nn.ReLU(), nn.MaxPool2d(2), nn.Conv2d(32, 64, 3, padding=1), nn.ReLU(), nn.MaxPool2d(2), nn.Flatten(), nn.Linear(64 * (IMG_HEIGHT // 8) * (IMG_WIDTH // 8), 256), nn.ReLU(), nn.Linear(256, 2), nn.Softmax(dim=1) ) model.to(device) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) for epoch in range(EPOCHS): train_loss = 0.0 train_acc = 0.0 model.train() for images, labels in train_loader: images = images.to(device) labels = labels.to(device) optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() train_loss += loss.item() * images.size(0) _, preds = torch.max(outputs, 1) train_acc += torch.sum(preds == labels.data) train_loss = train_loss / len(train_loader.dataset) train_acc = train_acc / len(train_loader.dataset) print('Epoch: {} \tTraining Loss: {:.6f} \tTraining Accuracy: {:.6f}'.format(epoch+1, train_loss,train_acc)) with torch.no_grad(): test_loss = 0.0 test_acc = 0.0 model.eval() for images, labels in test_loader: images = images.to(device) labels = labels.to(device) outputs = model(images) loss = criterion(outputs, labels) test_loss += loss.item() * images.size(0) _, preds = torch.max(outputs, 1) test_acc += torch.sum(preds == labels.data) test_loss = test_loss / len(test_loader.dataset) test_acc = test_acc / len(test_loader.dataset) print('Test Loss: {:.6f} \tTest Accuracy: {:.6f}'.format(test_loss,test_acc))

@torch.no_grad() def main(): global args, save_path args = parser.parse_args() data_dir = Path(args.data) print("=> fetching img pairs in '{}'".format(args.data)) if args.output is None: save_path = data_dir/'flow' else: save_path = Path(args.output) print('=> will save everything to {}'.format(save_path)) save_path.makedirs_p() # Data loading code input_transform = transforms.Compose([transforms.Normalize(mean=[0,0,0], std=[255,255,255]) ])

这段代码定义了一个名为 `main` 的函数,并使用装饰器 `@torch.no_grad()` 来禁用梯度计算,以减少内存消耗。 `main` 函数首先使用 `parser.parse_args()` 解析命令行参数,并将结果保存在全局变量 `args` 中。 接下来,代码通过 `Path` 类将命令行参数中的数据文件夹路径转换为 `data_dir` 对象,并打印一条消息指示正在获取图像对。 然后,代码根据命令行参数中的输出文件夹路径创建一个目录,并将其保存在全局变量 `save_path` 中。如果未指定输出文件夹路径,则默认创建一个名为 "flow" 的子目录。 接着,代码创建了一个名为 `input_transform` 的图像转换对象。在这个例子中,它只应用了一个归一化操作,即将图像的像素值从 `[0,0,0]` 到 `[255,255,255]` 范围进行归一化。 以上就是这段代码的主要内容和功能。如果有更多问题,可以继续提问。

相关推荐

Traceback (most recent call last): File "D:\Anaconda\lib\site-packages\IPython\core\interactiveshell.py", line 3369, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-6-b8424bd64091>", line 2, in <cell line: 2> import torchvision File "D:\Pycharm\PyCharm Community Edition 2022.1.3\plugins\python-ce\helpers\pydev\_pydev_bundle\pydev_import_hook.py", line 21, in do_import module = self._system_import(name, *args, **kwargs) File "D:\Anaconda\lib\site-packages\torchvision\__init__.py", line 6, in <module> from torchvision import datasets, io, models, ops, transforms, utils File "D:\Pycharm\PyCharm Community Edition 2022.1.3\plugins\python-ce\helpers\pydev\_pydev_bundle\pydev_import_hook.py", line 21, in do_import module = self._system_import(name, *args, **kwargs) File "D:\Anaconda\lib\site-packages\torchvision\models\__init__.py", line 17, in <module> from . import detection, optical_flow, quantization, segmentation, video File "D:\Pycharm\PyCharm Community Edition 2022.1.3\plugins\python-ce\helpers\pydev\_pydev_bundle\pydev_import_hook.py", line 21, in do_import module = self._system_import(name, *args, **kwargs) File "D:\Anaconda\lib\site-packages\torchvision\models\quantization\__init__.py", line 3, in <module> from .mobilenet import * File "D:\Pycharm\PyCharm Community Edition 2022.1.3\plugins\python-ce\helpers\pydev\_pydev_bundle\pydev_import_hook.py", line 21, in do_import module = self._system_import(name, *args, **kwargs) File "D:\Anaconda\lib\site-packages\torchvision\models\quantization\mobilenet.py", line 1, in <module> from .mobilenetv2 import * # noqa: F401, F403 File "D:\Pycharm\PyCharm Community Edition 2022.1.3\plugins\python-ce\helpers\pydev\_pydev_bundle\pydev_import_hook.py", line 21, in do_import module = self._system_import(name, *args, **kwargs) File "D:\Anaconda\lib\site-packages\torchvision\models\quantization\mobilenetv2.py", line 5, in <module> from torch.ao.quantization import DeQuantStub, QuantStub File "D:\Pycharm\PyCharm Community Edition 2022.1.3\plugins\python-ce\helpers\pydev\_pydev_bundle\pydev_import_hook.py", line 21, in do_import module = self._system_import(name, *args, **kwargs) ModuleNotFoundError: No module named 'torch.ao.quantization'

最新推荐

recommend-type

40个非常酷的CSS3动画演示

29. **Coverflow**:类似苹果Cover Flow的效果,用于浏览图片或项目。 30. **雪花**:模拟雪花飘落的动画,增添节日气氛。 31. **jQuery DJ Hero**:结合jQuery和CSS3的音乐播放器动画,创造动感体验。 32. **动态堆...
recommend-type

基于机器学习心脏病预测python源码+csv格式数据集(下载即用)

基于机器学习心脏病预测python源码+csv格式数据集(下载即用)在这个项目中,我们探讨的是如何运用机器学习技术来预测心脏病,具体是通过Python编程语言以及scikit-learn这个强大的机器学习库。这个压缩包包含了必要的源代码和数据集,可以帮助初学者或者研究者理解并实践预测模型的构建过程。 我们要了解数据集。在这个案例中,数据集是以CSV(Comma Separated Values)格式提供的,这是一种常见的数据存储格式,易于读写且兼容性好。CSV文件通常用于存储表格数据,比如数据库导出或数据分析任务。在本项目中,数据集可能包含了患者的各种生理指标,如年龄、性别、血压、胆固醇水平等,这些都是预测心脏病风险的重要因素。 接下来,我们将聚焦于Python编程和scikit-learn库。Python是数据科学和机器学习领域广泛使用的语言,其简洁易读的语法使得代码编写更加直观。scikit-learn是Python中最受欢迎的机器学习库之一,它提供了丰富的算法库,包括分类、回归、聚类和降维等,对于初学者来说非常友好。 在源代码中,我们首先会进行数据预处理步骤,包括加载数据集
recommend-type

大数据处理框架:Spark:Spark基础架构与原理.docx

大数据处理框架:Spark:Spark基础架构与原理.docx
recommend-type

LPE16000/LPE16000B/LPE16002/LPE16004/LEP16002B-M36 Win2016驱动

Emulex LPE16000/LPE16000B/LPE16002/LPE16004/LEP16002B-M36 HBA卡适用于Windows Server 2012 64bit/Windows Server 2012R2 64bit/Windows Server 2016 64bit/Windows Server 2019 64bit 得HBA卡驱动
recommend-type

数据湖:Iceberg:Iceberg数据湖的运维与监控.docx

数据湖:Iceberg:Iceberg数据湖的运维与监控.docx
recommend-type

新型矿用本安直流稳压电源设计:双重保护电路

"该文提出了一种基于LM2576-ADJ开关型降压稳压器和LM339四差分比较器的矿用本安直流稳压电源设计方案,旨在实现高稳定性输出电压和高效能。设计中包含了输出可调型稳压电路,以及具备自恢复功能的双重过压、过流保护电路,减少了开关器件的使用,从而降低了电源内部能耗。实验结果显示,此电源能在18.5~26.0V的宽电压输入范围内工作,输出12V电压,最大工作电流500mA,负载效应低至1%,整体效率高达85.7%,表现出良好的稳定性和可靠性。" 在矿井作业环境中,安全是至关重要的。本文研究的矿用本安直流稳压电源设计,旨在为井下设备提供稳定可靠的电力供应,同时确保在异常情况下不产生点燃危险的火花,满足本安(Intrinsic Safety)标准。LM2576-ADJ是一种开关型降压稳压器,常用于实现高效的电压转换和调节。通过精细调整和优化关键组件,该设计能够实现输出电压的高稳定性,这对于矿井设备的正常运行至关重要。 过压和过流保护是电源设计中的关键环节,因为它们可以防止设备因电压或电流过高而损坏。作者分析了过压和过流保护的理论,并设计出一种新型的双重保护电路,具有自恢复功能。这意味着在发生过压或过流事件时,系统能够自动切断电源,待条件恢复正常后自动恢复供电,无需人工干预,增加了系统的安全性。 此外,设计中通过减少开关器件的使用,进一步降低了电源内部的能耗,这不仅提高了电源效率,也延长了电池寿命,对于矿井中电力资源有限的环境来说尤其重要。实验数据显示,电源能够在18.5到26.0伏特的输入电压范围内工作,输出12伏特电压,最大工作电流不超过500毫安,负载效应仅为1%,这意味着电源在不同负载下输出电压的稳定性非常好。电源的整体效率达到85.7%,这表明在实际应用中,大部分输入能量都能有效地转化为可用的输出功率。 这种矿用本安直流稳压电源设计结合了高效能、高稳定性、自恢复保护和低能耗等特性,对提升矿井设备的安全性和工作效率具有重要意义。同时,其技术方案也为类似工况下的电源设计提供了参考。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

模型部署最佳实践:5个步骤确保你的模型稳定运行

![模型部署最佳实践:5个步骤确保你的模型稳定运行](https://www.fticonsulting.com/emea/insights/articles/-/media/ec68c768d8314ee9bd1d00109c2b603c.ashx) # 1. 模型部署概述 ## 概述 模型部署是将机器学习模型转化为实际应用的必经之路。它是整个模型生命周期中至关重要的一步,涉及到技术、工具以及流程的细致考量。 ## 重要性 部署过程的质量直接影响模型的性能和可扩展性。良好的部署策略确保模型在不同的环境中运行稳定,并满足实时性和资源效率的业务需求。 ## 关键步骤 部署前的准备工作
recommend-type

国内docker镜像下架,影响k8s吗

国内Docker镜像下架可能会对运行在Kubernetes (k8s)环境中的应用造成一定的影响。Kubernetes依赖于Docker镜像作为容器的基础层,用于创建和管理容器化的应用程序。如果常用的应用程序镜像不再可用,可能带来的影响包括: 1. **部署延迟或失败**:当新的Pod需要创建时,由于找不到所需的镜像,可能导致部署过程停滞或失败。 2. **更新困难**:镜像源受限的情况下,开发者可能无法及时获取到最新的修复、升级或功能版本,影响系统的维护和升级流程。 3. **性能下降**:频繁从海外镜像源下载可能会影响整体系统的响应速度,尤其是在网络连接不佳的时候。 4. **安全
recommend-type

煤矿掘进工作面安全因素研究:结构方程模型

"基于结构方程的煤矿掘进工作面安全因素研究" 在煤矿行业中,掘进工作面的安全问题是至关重要的,因为它直接影响到矿工的生命安全和煤矿的生产效率。本研究以"基于结构方程的煤矿掘进工作面安全因素研究"为主题,深入探讨了影响煤矿掘进工作面安全质量的关键因素,并通过结构方程模型进行了实证分析。 首先,研究提出了人员、机器和环境三个主要的安全因素维度。人员因素主要关注矿工的安全意识,这是确保安全操作的基础。机器因素则强调设备的可操作性,高质量、可靠的设备能够减少因设备故障导致的事故。环境因素,特别是井下平均涌水量,对于工作面的稳定性有显著影响,过多的涌水可能引发淹井等严重安全事故。 结构方程模型是一种统计分析工具,常用于探究复杂系统中各变量之间的因果关系。在这个研究中,该模型被用来构建掘进工作面安全因素与安全质量的关系模型。通过对问卷调查数据的分析,模型揭示了这三个因素对安全质量的实际影响。 研究结果显示,人员因素中的安全意识对安全质量的影响最为突出。这表明提高矿工的安全教育和培训,增强他们的安全意识,是保障掘进工作面安全的首要任务。其次,机器因素中的设备可操作性也起着关键作用,这意味着必须定期维护和更新设备,确保其始终处于良好的运行状态。环境因素中的井下平均涌水量影响了工作面的稳定性,因此,有效的排水系统和地下水管理策略也是不可或缺的。 该研究为煤矿安全管理提供了理论依据和实践指导,有助于制定更科学的安全管理策略和预防措施。通过对这些关键因素的深入理解和控制,可以有效降低煤矿掘进工作面的安全风险,提高整体的安全生产水平。此外,该研究方法也可应用于其他类似的高风险工业领域,以提升整体行业的安全管理水平。