CNN网络入侵检测的代码
时间: 2023-08-17 14:04:23 浏览: 122
基于CNN卷积神经网络的网络入侵检测python源码+详细注释.zip
5星 · 资源好评率100%
以下是使用Keras实现CNN网络入侵检测的代码:
```python
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Conv1D, MaxPooling1D, Flatten
from keras.utils import np_utils
# 加载数据集
X_train = np.load('X_train.npy')
y_train = np.load('y_train.npy')
X_test = np.load('X_test.npy')
y_test = np.load('y_test.npy')
# 对标签进行one-hot编码
y_train = np_utils.to_categorical(y_train)
y_test = np_utils.to_categorical(y_test)
# 构建CNN模型
model = Sequential()
model.add(Conv1D(filters=64, kernel_size=3, activation='relu', input_shape=(X_train.shape[1], 1)))
model.add(Conv1D(filters=64, kernel_size=3, activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(y_train.shape[1], activation='softmax'))
# 编译模型
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# 训练模型
model.fit(X_train, y_train, epochs=10, batch_size=32, validation_data=(X_test, y_test))
# 评估模型
score = model.evaluate(X_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
```
在这个代码中,我们使用Conv1D层来构建卷积层,MaxPooling1D层来进行池化操作,Flatten层来将卷积层的输出压缩成一维向量,Dense层来构建全连接层。最后,我们使用softmax函数作为输出层的激活函数,用于多分类任务。
阅读全文