resnet50 pytorch 加载权重文件的pridict文件
时间: 2023-06-16 17:06:34 浏览: 131
Resnet 50 权重文件
以下是使用 PyTorch 加载 ResNet50 预训练权重文件并进行预测的示例代码:
```python
import torch
import torchvision.models as models
import torchvision.transforms as transforms
from PIL import Image
# Load ResNet50 model
model = models.resnet50()
# Load pretrained weights
model.load_state_dict(torch.load('resnet50_weights.pth'))
# Set model to evaluation mode
model.eval()
# Load and preprocess image
image = Image.open('test_image.jpg')
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
image = transform(image)
# Make predictions
with torch.no_grad():
output = model(image.unsqueeze(0))
probabilities = torch.nn.functional.softmax(output, dim=1)[0]
# Print top 5 predicted classes and their probabilities
top5_prob, top5_classes = torch.topk(probabilities, k=5)
for i in range(5):
print(f"Class: {top5_classes[i]}, Probability: {top5_prob[i]}")
```
需要注意的是,这里的预训练权重文件 `resnet50_weights.pth` 需要先下载并保存到本地。可以从 PyTorch 官网下载地址中找到对应的权重文件,也可以从其他来源下载。
阅读全文