构建resnet网络pytorch
时间: 2023-04-07 11:00:51 浏览: 277
可以回答这个问题。在PyTorch中,可以使用torchvision.models中的resnet模块来构建ResNet网络。以下是一个简单的代码示例:
```
import torch
import torchvision.models as models
# 构建ResNet18网络
resnet18 = models.resnet18()
# 构建ResNet50网络
resnet50 = models.resnet50()
```
这里我们使用了torchvision.models中的resnet18和resnet50函数来构建ResNet18和ResNet50网络。当然,你也可以根据自己的需求来构建其他版本的ResNet网络。
相关问题
构建resnet152网络pytorch
我可以回答这个问题。构建resnet152网络pytorch的代码如下:
```python
import torch.nn as nn
import torch.utils.model_zoo as model_zoo
model_urls = {
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
}
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = conv1x1(inplanes, planes)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = conv3x3(planes, planes, stride)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = conv1x1(planes, planes * self.expansion)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=1000):
super(ResNet, self).__init__()
self.inplanes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
def resnet152(pretrained=False, **kwargs):
"""Constructs a ResNet-152 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet152']))
return model
```
这段代码可以构建一个ResNet-152网络,可以通过调用`resnet152()`函数来使用。如果需要使用预训练模型,可以将`pretrained`参数设置为`True`。
resnet源码pytorch
ResNet源码是用于实现残差网络(Residual Network)的PyTorch代码。ResNet是一种深度神经网络,其主要目的是解决深层网络训练中的梯度消失和精度下降等问题。
ResNet源码中的核心思想是引入残差模块,通过将输入信息与输出信息相加,从而保持信息的传递流畅性。该网络模型具有很深的层数,堆叠了大量的残差模块。这种结构使得网络更加易于训练,能够更好地捕捉图像特征。
PyTorch是一个开源的深度学习框架,ResNet源码使用PyTorch库来实现网络的构建、训练和测试等功能。通过PyTorch的动态图机制,我们可以方便地搭建和修改ResNet模型,以适应不同的任务和数据。
在ResNet源码中,我们可以看到各种网络层、激活函数、优化器等的定义和使用。同时,源码还提供了一些预训练的模型权重,这些权重可以加载到网络中,为我们的任务提供一个更好的起点。
通过仔细研究ResNet源码,我们可以了解到网络结构的细节,以及如何在PyTorch中构建和训练深度神经网络。此外,我们还可以根据源码进行修改和扩展,以满足特定的需求。
总之,ResNet源码是PyTorch的一个重要示例,它展示了如何使用PyTorch构建和训练深度神经网络,在图像分类等任务中取得出色的效果。通过研究源码,我们可以更好地理解深度学习模型的实现原理,并为自己的研究和应用提供参考。
阅读全文
相关推荐
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)