用pytorch构建resnet18的详细步骤
时间: 2023-09-10 14:10:35 浏览: 90
好的,下面是构建resnet18的详细步骤:
Step 1: 加载必要的库和模块
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
```
Step 2: 定义基本的块
```python
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3,
stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out
```
Step 3: 定义完整的ResNet18网络结构
```python
class ResNet18(nn.Module):
def __init__(self, num_classes=10):
super(ResNet18, self).__init__()
self.in_planes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=3,
stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.layer1 = nn.Sequential(
BasicBlock(64, 64, stride=1),
BasicBlock(64, 64, stride=1)
)
self.layer2 = nn.Sequential(
BasicBlock(64, 128, stride=2),
BasicBlock(128, 128, stride=1)
)
self.layer3 = nn.Sequential(
BasicBlock(128, 256, stride=2),
BasicBlock(256, 256, stride=1)
)
self.layer4 = nn.Sequential(
BasicBlock(256, 512, stride=2),
BasicBlock(512, 512, stride=1)
)
self.linear = nn.Linear(512, num_classes)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = F.avg_pool2d(out, 4)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
```
Step 4: 实例化 ResNet18 模型
```python
resnet18 = ResNet18()
```
阅读全文