arduino小车转向代码

时间: 2023-07-09 21:23:11 浏览: 120
下面是一个简单的Arduino小车转向代码示例: ``` #include <Servo.h> Servo steeringServo; // 创建一个舵机对象 void setup() { steeringServo.attach(9); // 将舵机连接到引脚9 } void loop() { steeringServo.write(90); // 设置舵机角度为90度,即直行 delay(1000); // 延时1秒 steeringServo.write(0); // 设置舵机角度为0度,即左转 delay(1000); // 延时1秒 steeringServo.write(180); // 设置舵机角度为180度,即右转 delay(1000); // 延时1秒 } ``` 这个程序使用了Arduino的Servo库来控制舵机,通过调用`steeringServo.write()`函数来设置舵机的角度,从而实现小车的转向。在`loop()`函数中,程序先将舵机设置为90度,即直行状态,然后等待1秒钟;接着将舵机设置为0度,即左转状态,再等待1秒钟;最后将舵机设置为180度,即右转状态,再等待1秒钟。这个过程会不断重复,从而实现小车的连续转向。
相关问题

arduino避障小车代码

以下是一个简单的Arduino避障小车代码: ```C++ //定义电机引脚 const int leftMotorA = 3; const int leftMotorB = 5; const int rightMotorA = 6; const int rightMotorB = 9; //定义超声波引脚 const int trigPin = 13; const int echoPin = 12; //定义超声波参数 long duration; int distance; void setup() { //设置电机引脚为输出 pinMode(leftMotorA, OUTPUT); pinMode(leftMotorB, OUTPUT); pinMode(rightMotorA, OUTPUT); pinMode(rightMotorB, OUTPUT); //设置超声波引脚为输入 pinMode(trigPin, OUTPUT); pinMode(echoPin, INPUT); //设置串口通信 Serial.begin(9600); } void loop() { //测量距离 digitalWrite(trigPin, LOW); delayMicroseconds(2); digitalWrite(trigPin, HIGH); delayMicroseconds(10); digitalWrite(trigPin, LOW); duration = pulseIn(echoPin, HIGH); distance = duration/58.2; //输出距离 Serial.print("Distance: "); Serial.print(distance); Serial.println(" cm"); //根据距离控制小车运动 if(distance > 20) { forward(); } else { backward(); delay(1000); turnRight(); delay(1000); } } //向前 void forward() { digitalWrite(leftMotorA, HIGH); digitalWrite(leftMotorB, LOW); digitalWrite(rightMotorA, HIGH); digitalWrite(rightMotorB, LOW); } //向后 void backward() { digitalWrite(leftMotorA, LOW); digitalWrite(leftMotorB, HIGH); digitalWrite(rightMotorA, LOW); digitalWrite(rightMotorB, HIGH); } //向左转 void turnLeft() { digitalWrite(leftMotorA, LOW); digitalWrite(leftMotorB, HIGH); digitalWrite(rightMotorA, HIGH); digitalWrite(rightMotorB, LOW); } //向右转 void turnRight() { digitalWrite(leftMotorA, HIGH); digitalWrite(leftMotorB, LOW); digitalWrite(rightMotorA, LOW); digitalWrite(rightMotorB, HIGH); } ``` 这个代码使用超声波模块测量距离,根据距离控制小车的运动。如果距离大于20厘米,小车向前行驶。如果距离小于等于20厘米,小车后退一秒钟,然后向右转一秒钟。你可以根据具体情况修改距离和转向时间。

arduino超声波跟随小车代码

### 回答1: Arduino超声波跟随小车的代码主要包括以下几个部分: 1. 引入所需的库文件。在代码的开头部分,需要引入与超声波传感器和电机驱动器相关的库文件,例如"Ultrasonic.h"和"AFMotor.h"。 2. 初始化超声波传感器和电机驱动器。在"void setup()"函数中,需要初始化超声波传感器和电机驱动器的引脚和设置其工作模式。 3. 编写测距函数。创建一个名为"getDistance()"的函数,用于获取超声波传感器测得的距离值。 4. 编写控制小车行驶的函数。创建一个名为"follow()"的函数,通过控制电机驱动器的引脚输出来实现小车的跟随。可以根据测得的距离值来判断小车前进、停止或者转向。 5. 主循环中调用函数。在"void loop()"函数中,通过调用"getDistance()"函数获取距离值,然后根据距离值调用"follow()"函数来控制小车行驶。 总结起来,以上就是实现Arduino超声波跟随小车的基本代码。当代码运行时,超声波传感器不断测量前方的距离,并根据测得的距离值来控制电机驱动器引脚的输出,从而实现小车的跟随。具体的代码细节还需要根据具体的硬件和需求进行调整和修改。 ### 回答2: Arduino超声波跟随小车代码的主要实现思路是利用超声波传感器测量车子前方障碍物的距离,并根据距离调整车子的行进方向。以下是一种可能的Arduino超声波跟随小车的代码示例: 首先,我们需要定义引脚连接: int trigPin = 2; // 设置超声波传感器的TRIG引脚连接到Arduino的2号引脚 int echoPin = 3; // 设置超声波传感器的ECHO引脚连接到Arduino的3号引脚 int leftMotor = 4; // 设置左侧电机的引脚连接到Arduino的4号引脚 int rightMotor = 5; // 设置右侧电机的引脚连接到Arduino的5号引脚 int speed = 255; // 设置车子的速度值 在setup()函数中做初始化设置: void setup() { pinMode(trigPin, OUTPUT); pinMode(echoPin, INPUT); pinMode(leftMotor, OUTPUT); pinMode(rightMotor, OUTPUT); Serial.begin(9600); // 设置串口通信 } 然后,在loop()函数中进行主要的操作: void loop() { digitalWrite(trigPin, LOW); delayMicroseconds(2); digitalWrite(trigPin, HIGH); delayMicroseconds(10); digitalWrite(trigPin, LOW); float duration = pulseIn(echoPin, HIGH); // 通过pulseIn函数测量返回超声波传感器的信号脉冲宽度 float distance = duration * 0.034 / 2; // 根据脉冲宽度计算距离值,声波速度大约为每毫秒34厘米,除以2得到单程距离 if (distance <= 20) { // 如果距离小于等于20厘米,说明有障碍物 digitalWrite(leftMotor, HIGH); // 左侧电机停止 digitalWrite(rightMotor, HIGH); // 右侧电机停止 } else { // 如果距离大于20厘米,说明没有障碍物 digitalWrite(leftMotor, HIGH); // 左侧电机向前 digitalWrite(rightMotor, HIGH); // 右侧电机向前 } delay(100); // 延时一段时间后重新进行测量和判断 } 通过以上代码,就实现了一个简单的超声波跟随小车。当车子前方有障碍物时,车子会停下来;当车子前方没有障碍物时,车子会向前行驶。你可以根据自己的需要调整距离阈值和速度值来适应不同场景的要求。 ### 回答3: 以下是一个简单的Arduino超声波跟随小车的代码示例: 首先,连接超声波模块的Trig引脚到Arduino的数字引脚9,Echo引脚连接到Arduino的数字引脚10。 然后,将左马达(电机)连接到Arduino的数字引脚5和6,将右马达连接到数字引脚10和11。 接下来,我们需要声明一些变量,包括超声波引脚和马达引脚的定义。 #include <NewPing.h> #define TRIGGER_PIN 9 #define ECHO_PIN 10 #define MAX_DISTANCE 200 #define LEFT_MOTOR_1 5 #define LEFT_MOTOR_2 6 #define RIGHT_MOTOR_1 10 #define RIGHT_MOTOR_2 11 NewPing sonar(TRIGGER_PIN, ECHO_PIN, MAX_DISTANCE); 然后,在setup()函数中设置马达引脚为输出模式。 void setup() { pinMode(LEFT_MOTOR_1, OUTPUT); pinMode(LEFT_MOTOR_2, OUTPUT); pinMode(RIGHT_MOTOR_1, OUTPUT); pinMode(RIGHT_MOTOR_2, OUTPUT); } 接下来,在loop()函数中,我们需要获取超声波传感器的测量距离,并根据距离调整小车的行动。 void loop() { int distance = sonar.ping_cm(); if (distance < 20) { // 如果距离小于20厘米 // 后退 digitalWrite(LEFT_MOTOR_1, LOW); digitalWrite(LEFT_MOTOR_2, HIGH); digitalWrite(RIGHT_MOTOR_1, LOW); digitalWrite(RIGHT_MOTOR_2, HIGH); } else if (distance > 20 && distance < 50) { // 如果距离介于20到50厘米之间 // 向右转 digitalWrite(LEFT_MOTOR_1, HIGH); digitalWrite(LEFT_MOTOR_2, LOW); digitalWrite(RIGHT_MOTOR_1, LOW); digitalWrite(RIGHT_MOTOR_2, HIGH); } else { // 如果距离大于50厘米 // 向前走 digitalWrite(LEFT_MOTOR_1, HIGH); digitalWrite(LEFT_MOTOR_2, LOW); digitalWrite(RIGHT_MOTOR_1, HIGH); digitalWrite(RIGHT_MOTOR_2, LOW); } } 以上就是一个简单的Arduino超声波跟随小车的代码。当距离小于20厘米时,小车会后退;当距离介于20到50厘米之间时,小车会向右转;当距离大于50厘米时,小车会向前走。可以根据实际情况进行调整和优化代码。

相关推荐

最新推荐

recommend-type

yolov5-face-landmarks-opencv

yolov5检测人脸和关键点,只依赖opencv库就可以运行,程序包含C++和Python两个版本的。 本套程序根据https://github.com/deepcam-cn/yolov5-face 里提供的训练模型.pt文件。转换成onnx文件, 然后使用opencv读取onnx文件做前向推理,onnx文件从百度云盘下载,下载 链接:https://pan.baidu.com/s/14qvEOB90CcVJwVC5jNcu3A 提取码:duwc 下载完成后,onnx文件存放目录里,C++版本的主程序是main_yolo.cpp,Python版本的主程序是main.py 。此外,还有一个main_export_onnx.py文件,它是读取pytorch训练模型.pt文件生成onnx文件的。 如果你想重新生成onnx文件,不能直接在该目录下运行的,你需要把文件拷贝到https://github.com/deepcam-cn/yolov5-face 的主目录里运行,就可以生成onnx文件。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

导入numpy库,创建两个包含9个随机数的3*3的矩阵,将两个矩阵分别打印出来,计算两个数组的点积并打印出来。(random.randn()、dot()函数)

可以的,以下是代码实现: ```python import numpy as np # 创建两个包含9个随机数的3*3的矩阵 matrix1 = np.random.randn(3, 3) matrix2 = np.random.randn(3, 3) # 打印两个矩阵 print("Matrix 1:\n", matrix1) print("Matrix 2:\n", matrix2) # 计算两个数组的点积并打印出来 dot_product = np.dot(matrix1, matrix2) print("Dot product:\n", dot_product) ``` 希望
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。