File "C:\Users\周啦啦^\AppData\Local\Temp\ipykernel_21000\3974455092.py", line 15 sorted_students=sorted(students,key=lambda x:len(x[1][1])), reverse=True) ^ SyntaxError: cannot assign to function call
时间: 2023-10-07 21:07:44 浏览: 212
这个错误是因为你在sorted函数中使用了错误的语法。正常的sorted函数的语法是`sorted(iterable, key=key, reverse=reverse)`,其中`key`和`reverse`是可选参数。你应该将排序的结果赋值给一个变量,然后再进行反转。如果你想要按照学生的名字长度进行排序并且按照降序排列,你可以尝试以下代码:
```
sorted_students = sorted(students, key=lambda x: len(x[1][1]), reverse=True)
```
这样就可以按照学生名字的长度对学生进行排序了。
相关问题
C:\Users\12132\AppData\Local\Temp\ipykernel_18008\2092211006.py:20: FutureWarning: The default dtype for empty Series will be 'object' instead of 'float64' in a future version. Specify a dtype explicitly to silence this warning. word_series = pd.Series(counts_dict2['Word']) C:\Users\12132\AppData\Local\Temp\ipykernel_18008\2092211006.py:21: FutureWarning: The default dtype for empty Series will be 'object' instead of 'float64' in a future version. Specify a dtype explicitly to silence this warning. count_series = pd.Series(counts_dict2['Count'])
这个警告是由于在创建空的Series对象时,未确指定数据类型(dtype)。为了消除该警告,你可以在创建Series对象时,通过指定`dtype`参数来明确指定数据类型。
以下是修改后的代码示例:
```python
import pandas as pd
from collections import Counter
# 创建一个空的字典用于存储单词计数结果
counts_dict = {'Word': [], 'Count': []}
# 遍历文件路径
for path in file_paths:
# 读取文件内容,并选择特定列
df = pd.read_csv(path, usecols=['start station id'])
# 将特定列的值转换为字符串,并使用空格分隔
content = ' '.join(df['start station id'].astype(str))
# 使用Counter进行单词计数
counts = Counter(content.split())
# 将计数结果添加到字典中
counts_dict.update(counts)
# 按照计数大小进行排序,并返回一个列表
sorted_counts = sorted(counts_dict.items(), key=lambda x: x[1], reverse=True)
# 创建每个列的Series对象,并指定数据类型为对象类型
word_series = pd.Series(count[0] for count in sorted_counts, dtype=object)
count_series = pd.Series(count[1] for count in sorted_counts, dtype=object)
# 合并为DataFrame对象
result_df = pd.DataFrame({'Word': word_series, 'Count': count_series})
# 将结果保存到Excel文件
result_df.to_excel('C:/Users/12132/Desktop/data.xlsx', index=False)
```
在修改后的代码中,我们使用了生成器表达式来创建每个列的Series对象,并通过`dtype=object`参数将数据类型设置为对象类型,以明确指定数据类型。这样就可以消除FutureWarning警告。最后,将两个Series对象合并为DataFrame对象,并将结果保存到Excel文件中。请根据你的实际情况进行相应的修改。
Traceback (most recent call last): File "D:/pycharts程序/基于機器學習的銷售量預測/main/随机森林模型.py", line 137, in <module> rfr.fit(X_train,y_train) File "C:\Users\DELL\AppData\Local\Programs\Python\Python37\lib\site-packages\sklearn\ensemble\_forest.py", line 467, in fit for i, t in enumerate(trees) File "C:\Users\DELL\AppData\Local\Programs\Python\Python37\lib\site-packages\joblib\parallel.py", line 1056, in __call__ self.retrieve() File "C:\Users\DELL\AppData\Local\Programs\Python\Python37\lib\site-packages\joblib\parallel.py", line 935, in retrieve self._output.extend(job.get(timeout=self.timeout)) File "C:\Users\DELL\AppData\Local\Programs\Python\Python37\lib\multiprocessing\pool.py", line 657, in get raise self._value File "C:\Users\DELL\AppData\Local\Programs\Python\Python37\lib\multiprocessing\pool.py", line 121, in worker result = (True, func(*args, **kwds)) File "C:\Users\DELL\AppData\Local\Programs\Python\Python37\lib\site-packages\joblib\_parallel_backends.py", line 595, in __call__ return self.func(*args, **kwargs) File "C:\Users\DELL\AppData\Local\Programs\Python\Python37\lib\site-packages\joblib\parallel.py", line 263, in __call__ for func, args, kwargs in self.items] File "C:\Users\DELL\AppData\Local\Programs\Python\Python37\lib\site-packages\joblib\parallel.py", line 263, in <listcomp> for func, args, kwargs in self.items] File "C:\Users\DELL\AppData\Local\Programs\Python\Python37\lib\site-packages\sklearn\utils\fixes.py", line 216, in __call__ return self.function(*args, **kwargs) File "C:\Users\DELL\AppData\Local\Programs\Python\Python37\lib\site-packages\sklearn\ensemble\_forest.py", line 185, in _parallel_build_trees tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) File "C:\Users\DELL\AppData\Local\Programs\Python\Python37\lib\site-packages\sklearn\tree\_classes.py", line 1320, in fit X_idx_sorted=X_idx_sorted, File "C:\Users\DELL\AppData\Local\Programs\Python\Python37\lib\site-packages\sklearn\tree\_classes.py", line 356, in fit criterion = CRITERIA_REG[self.criterion](self.n_outputs_, n_samples) KeyError: 'rmse'
这个错误发生在 sklearn 的随机森林模型的训练过程中,具体原因是因为你使用了一个不存在的 criterion(评估标准)参数值 'rmse'。随机森林模型只支持以下几种评估标准:
- mse:均方误差
- mae:平均绝对误差
- mape:平均绝对百分比误差
- poisson:泊松回归
请检查你的代码,将 criterion 参数设置为以上几种可用的评估标准之一即可。
阅读全文