def normalize_data(data_train, data_test): from sklearn.preprocessing import StandardScaler, MinMaxScaler scaler = MinMaxScaler(feature_range=(-1, 1)).fit(data_train) data_train = scaler.transform(data_train) data_test = scaler.transform(data_test) return data_train, data_test代码讲解
时间: 2023-06-18 15:05:42 浏览: 195
使用sklearn进行对数据标准化、归一化以及将数据还原的方法
这段代码定义了一个名为 `normalize_data` 的函数,该函数有两个输入参数:`data_train` 和 `data_test`,分别表示训练数据和测试数据。函数的作用是对数据进行归一化处理,以便更好地适应模型的训练和测试。
具体地,该函数先导入了 `StandardScaler` 和 `MinMaxScaler` 两个类,它们是 sklearn 库中实现数据归一化的两种方法。其中 `StandardScaler` 是通过标准化处理,即使得数据的均值为0,方差为1,来实现归一化的。而 `MinMaxScaler` 是通过缩放数据,使得数据的范围在指定的范围内,一般是 [0, 1] 或 [-1, 1]。
接着,该函数实例化了一个 `MinMaxScaler` 对象,使用 `fit` 方法对训练数据 `data_train` 进行拟合,得到了归一化所需的参数。然后,分别使用 `transform` 方法对训练数据和测试数据进行归一化处理,并将结果赋值给 `data_train` 和 `data_test` 变量。最后,该函数返回归一化后的训练数据和测试数据。
需要注意的是,该函数中使用的是 `MinMaxScaler` 进行归一化,且归一化的范围是 [-1, 1]。如果需要使用其他方法或范围进行归一化,可以根据实际需求进行修改。
阅读全文