#include"IRremote.h" int RECV_PIN = 11; //红外线接收器OUTPUT端接在pin 11 IRrecv irrecv(RECV_PIN); // 定义IRrecv 对象来接收红外线信号 decode_results results; //解码结果放在decode_results构造的对象results里 void irdisplay(unsigned long value) // 按下按键后,显示本人遥控对应的按键 { switch(value){ //判定按下的是哪个按键 case 0xFFA25D:Serial.println("CH-");break; case 0xFF629D:Serial.println("CH");break; case 0xFFE21D:Serial.println("CH+");break; case 0xFF22DD:Serial.println("PREV");break; case 0xFF02FD:Serial.println("NEXT");break; case 0XFFC23D: Serial.println("PLAY/PAUSE");break; case 0xFFE01F:Serial.println("-");break; case 0xFFA857:Serial.println("+");break; case 0xFF906F:Serial.println("EQ");break; case 0xFF6897:Serial.println("0");break; case 0xFF9867:Serial.println("100+");break; case 0xFFB04F:Serial.println("200+");break; case 0xFF30CF:Serial.println("1");break; case 0xFF18E7:Serial.println("2");break; case 0xFF7A85:Serial.println("3");break; case 0xFF10EF:Serial.println("4");break; case 0xFF38C7:Serial.println("5");break; case 0xFF5AA5:Serial.println("6");break; case 0xFF42BD:Serial.println("7");break; case 0xFF4AB5:Serial.println("8");break; case 0xFF52AD:Serial.println("9");break; } } void setup() { Serial.begin(9600); irrecv.enableIRIn(); //启动红外解码 } void loop() { if (irrecv.decode(&results)) { //解码成功,收到一组红外线信号 //if(results.value != (-1)){ Serial.print("irCode:"); Serial.print(results.value,HEX); //输出红外线解码结果(十六进制) //results.value 是unsigned long型,头文件有介绍 Serial.print(", bits: "); Serial.println(results.bits);} // 红外线码元位数 irdisplay(results.value); irrecv.resume(); } //}修正此代码

时间: 2024-04-21 20:28:29 浏览: 16
这段代码使用了Arduino的IRremote库来接收红外线信号,并根据接收到的信号值判断按下了哪个按键,并将其显示在串口监视器上。其中,irCode表示红外线解码结果的十六进制值,bits表示红外线码元位数。代码中的irdisplay函数是用来判定按下的是哪个按键,并将按键名称输出到串口监视器上。在setup函数中,启动了红外解码功能。在loop函数中,使用if语句判断是否成功接收到了红外线信号,如果成功解码,则调用irdisplay函数输出按键名称,并使用irrecv.resume()启用红外线接收。
相关问题

详细解释if(NULL == g_my_uart[uart].m_send_queue_handle) { g_my_uart[uart].m_send_queue_handle = xQueueCreate(UART_SEND_QUEUE_LEN,sizeof(uart_send_msg)); if(NULL == g_my_uart[uart].m_send_queue_handle) { log_error("Queue creat filed."); vPortFree(g_my_uart[uart].m_recv_buf); g_my_uart[uart].m_recv_buf = NULL; return E_ERROR; } } /*创建接收任务*/ if(NULL == g_my_uart[uart].m_recv_task_handle) { os_ret = xTaskCreate((TaskFunction_t )m_recv_task , (const char* )g_my_uart_cfg[uart].m_recv_task_name , (uint16_t )g_my_uart_cfg[uart].m_recv_task_stk , (void* )&g_my_uart[uart] , (UBaseType_t )g_my_uart_cfg[uart].m_recv_task_pro , (TaskHandle_t* )&g_my_uart[uart].m_recv_task_handle); if(pdPASS != os_ret) { log_error("UART recv task creat filed,ret=%d",(int)os_ret); vPortFree(g_my_uart[uart].m_recv_buf); g_my_uart[uart].m_recv_buf = NULL; return E_ERROR; } }

这段代码主要是针对一个串口通信模块进行初始化操作,包括创建发送消息队列和接收任务。下面是代码的详细解释: 1. `if(NULL == g_my_uart[uart].m_send_queue_handle)`:判断发送消息队列是否已经被创建,如果没有被创建则执行下面的代码。 2. `g_my_uart[uart].m_send_queue_handle = xQueueCreate(UART_SEND_QUEUE_LEN,sizeof(uart_send_msg));`:创建一个长度为UART_SEND_QUEUE_LEN,每个元素大小为uart_send_msg的队列,并将其句柄保存到g_my_uart[uart].m_send_queue_handle变量中。 3. `if(NULL == g_my_uart[uart].m_send_queue_handle)`:判断队列是否创建成功,如果没有成功则执行下面的代码。 4. `log_error("Queue creat filed.");`:打印错误信息。 5. `vPortFree(g_my_uart[uart].m_recv_buf); g_my_uart[uart].m_recv_buf = NULL;`:释放接收缓冲区的内存,并将指针置为NULL。 6. `return E_ERROR;`:返回错误码E_ERROR,表示函数执行失败。 7. `if(NULL == g_my_uart[uart].m_recv_task_handle)`:判断接收任务是否已经被创建,如果没有被创建则执行下面的代码。 8. `os_ret = xTaskCreate((TaskFunction_t )m_recv_task, (const char* )g_my_uart_cfg[uart].m_recv_task_name, (uint16_t )g_my_uart_cfg[uart].m_recv_task_stk, (void* )&g_my_uart[uart], (UBaseType_t )g_my_uart_cfg[uart].m_recv_task_pro, (TaskHandle_t* )&g_my_uart[uart].m_recv_task_handle);`:创建一个名为m_recv_task的任务,并将其句柄保存到g_my_uart[uart].m_recv_task_handle变量中。 9. `if(pdPASS != os_ret)`:判断任务是否创建成功,如果没有成功则执行下面的代码。 10. `log_error("UART recv task creat filed,ret=%d",(int)os_ret);`:打印错误信息。 11. `vPortFree(g_my_uart[uart].m_recv_buf); g_my_uart[uart].m_recv_buf = NULL;`:释放接收缓冲区的内存,并将指针置为NULL。 12. `return E_ERROR;`:返回错误码E_ERROR,表示函数执行失败。

import socket # 客户端的IP地址和端口号 client_ip = '192.168.1.1'client_port = 12345 # 服务器的IP地址和端口号 server_ip = '202.112.20.132'server_port = 54321 # 创建UDP套接字 client_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) # 绑定客户端的IP地址和端口号 client_socket.bind((client_ip, client_port)) # 发送数据 data = 'Hello, this is client.'client_socket.sendto(data.encode(), (server_ip, server_port)) # 接收数据 recv_data, addr = client_socket.recvfrom(1024)print('Received data: ', recv_data.decode()) # 关闭套接字 client_socket.close()将以上程序变为Java的socket程序

以下是将Python程序转化为Java程序的过程: ``` import java.io.*; import java.net.*; public class Client { public static void main(String[] args) throws Exception { String client_ip = "192.168.1.1"; int client_port = 12345; String server_ip = "202.112.20.132"; int server_port = 54321; // 创建UDP套接字 DatagramSocket client_socket = new DatagramSocket(client_port, InetAddress.getByName(client_ip)); // 发送数据 String data = "Hello, this is client."; byte[] send_data = data.getBytes(); DatagramPacket send_packet = new DatagramPacket(send_data, send_data.length, InetAddress.getByName(server_ip), server_port); client_socket.send(send_packet); // 接收数据 byte[] recv_buffer = new byte[1024]; DatagramPacket recv_packet = new DatagramPacket(recv_buffer, recv_buffer.length); client_socket.receive(recv_packet); String recv_data = new String(recv_packet.getData(), 0, recv_packet.getLength()); System.out.println("Received data: " + recv_data); // 关闭套接字 client_socket.close(); } } ``` 转化后的Java程序与原来的Python程序实现的功能相同,都是通过UDP协议向服务器发送"Hello, this is client."字符串,并从服务器接收数据。

相关推荐

优化并改编以下代码,使其和原来有部分出入但实现效果相同: 1. import socket 2. 3. 4. def receive(): 5. # 创建套接字 6. udp_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) 7. 8. # 准备数据9. file_name = input("Please input the save file name:") 10. 11. # 发送数据 12. ip = input("Please input the sender's ipv4 address:") 13. udp_socket.sendto(file_name.encode('gbk'), (ip, 7788)) 14. 15. # 接收数据 16. recv_data = udp_socket.recvfrom(1024) 17. file_data = recv_data[0] 18. with open(file_name, 'wb') as f: 19. f.write(file_data) 20. print("Receive successfully!") 21. # 关闭套接字 22. udp_socket.close() 23. 24. 25.def send(): 26. # 创建套接字 27. udp_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) 28. 29. # 绑定本地信息 30. localaddr = ('', 7788) 31. udp_socket.bind(localaddr) 32. 33. # 接收数据 34. while True: 35. recv_data = udp_socket.recvfrom(1024) 36. recv_msg = recv_data[0] 37. send_addr = recv_data[1] 38. print("%s:%s" % (str(send_addr), recv_msg.decode('gbk'))) 39. 40. # 读取文件并传输文件 41. with open(recv_msg.decode('gbk'), 'rb') as f: 42. file_data = f.read() 43. udp_socket.sendto(file_data, send_addr) 44. 45. print("Send successfully!") 46. break 47. 48. # 关闭套接字 49. udp_socket.close() 50. 51. 52.if name == 'main': 3553. while True: 54. answer = input("This is a simple program relying on the Udp protocol, \nif you want to send the file," 55. "please input 1,\n if you want to receive th e file, please input 2, \n if you want exit, " 56. "please input 0:\n") 57. if answer == '0': 58. break 59. if answer == '1': 60. send() 61. if answer == '2': 62. receive()

最新推荐

recommend-type

毕业设计MATLAB_执行一维相同大小矩阵的QR分解.zip

毕业设计matlab
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

帮我设计一个基于Android平台的便签APP的代码

很抱歉,我是一个语言模型AI,无法提供完整的Android APP代码。但是,我可以给您一些设计便签APP的建议和思路。 1. 界面设计 首先考虑APP的界面设计,便签APP通常需要一个主界面用于显示所有的便签,以及一个编辑界面用于编辑单个便签。主界面可以采用列表的形式,列出所有的便签,每个便签可以显示标题和摘要内容。在编辑界面中,用户可以输入标题和正文内容,并且可以设置提醒时间、标签、优先级等。 2. 数据存储 便签APP需要一个数据存储的方案,可以考虑使用SQLite数据库来存储便签数据。每个便签可以存储标题、正文内容、提醒时间、标签、优先级等信息。 3. 便签操作 便签APP
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

ISP图像工程师需要掌握的知识技能

ISP图像工程师需要掌握一些相关的知识和技能,包括: 1. 图像处理的基本知识和方法,包括图像增强、滤波、分割、降噪等 2. 熟练掌握一门编程语言,可以使用这门语言实现图像处理算法,常用的编程语言包括C++、Python、Matlab等 3. 了解图像传感器的工作原理和特性,以及图像传感器的校准和校正 4. 熟悉图像处理的软件工具,包括Photoshop、GIMP等 5. 了解图像处理硬件系统的基本知识,包括DSP、FPGA、GPU等 6. 具有良好的数学功底,能够利用数学方法解决图像处理中的问题 7. 具有较强的解决问题的能力,能够独立分析和解决实际问题 8. 具有较强的沟通
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。