从iris.csv文件中读取数据,已知数据标签共有三类,对每一类分别使用20个数据样本获得聚类中心,再对剩余所有无标签的数据用密度峰值聚类,其中数据有三个坐标,请用python实现
时间: 2023-03-30 09:03:53 浏览: 131
您好,我可以回答这个问题。以下是Python代码实现:
```python
import pandas as pd
import numpy as np
from sklearn.cluster import KMeans
from sklearn.cluster import estimate_bandwidth
from sklearn.cluster import MeanShift
# 读取iris.csv文件
iris = pd.read_csv('iris.csv')
# 分别获取三类数据
setosa = iris[iris['species'] == 'setosa'].iloc[:, :3]
versicolor = iris[iris['species'] == 'versicolor'].iloc[:, :3]
virginica = iris[iris['species'] == 'virginica'].iloc[:, :3]
# 对每一类分别使用20个数据样本获得聚类中心
kmeans_setosa = KMeans(n_clusters=1, random_state=).fit(setosa.sample(n=20))
kmeans_versicolor = KMeans(n_clusters=1, random_state=).fit(versicolor.sample(n=20))
kmeans_virginica = KMeans(n_clusters=1, random_state=).fit(virginica.sample(n=20))
# 获取聚类中心
centers = np.vstack((kmeans_setosa.cluster_centers_, kmeans_versicolor.cluster_centers_, kmeans_virginica.cluster_centers_))
# 使用密度峰值聚类
X = iris.iloc[:, :3]
bandwidth = estimate_bandwidth(X, quantile=.2, n_samples=500)
ms = MeanShift(bandwidth=bandwidth, bin_seeding=True)
ms.fit(X)
# 输出聚类结果
labels = ms.labels_
cluster_centers = ms.cluster_centers_
n_clusters_ = len(np.unique(labels))
print("聚类中心:", cluster_centers)
print("聚类数量:", n_clusters_)
```
希望能够帮到您!
阅读全文