;load ('6mm_matlab.mat') % 相机标定基本参数 M = cameraParams.IntrinsicMatrix'; R = cameraParams.RotationMatrices(:,:,1); T = cameraParams.TranslationVectors(1,:)'; UV = cameraParams.ReprojectedPoints(:,:,1); v = VideoReader('shoujilux7.mp4'); while hasFrame(v) frame = readFrame(v); gray_frame = rgb2gray(frame); % gamma校正 gamma = 1.5; gamma_corrected = imadjust(gray_frame,[],[],gamma); % 高斯滤波 sigma = 1; hsize = ceil(6sigma); h = fspecial('gaussian', hsize, sigma); filtered_frame = imfilter(gamma_corrected, h); % Otsu阈值分割 T = graythresh(filtered_frame); [m, n] = size(filtered_frame); E = bwareaopen(im2bw(filtered_frame, T), round(mn/1000), 8); % Canny边缘检测 canny_edge = edge(E, 'canny'); % 形态学膨胀 se = strel('disk', 2); dilated_edge = imdilate(canny_edge, se); % 连通域分析 stats = regionprops('table', dilated_edge, 'Area', 'Centroid'); % 筛选面积最大的连通区域 [~, idx] = max(stats.Area); centroid = stats.Centroid(idx, :); % 显示帧和质心 imshow(dilated_edge); hold on; plot(centroid(1), centroid(2), 'r+', 'MarkerSize', 10); hold off; 像素坐标转换为实际坐标显示

时间: 2023-12-06 20:39:55 浏览: 34
要将像素坐标转换为实际坐标,需要知道相机的外参参数。一旦有了相机的外参参数,可以使用相机的内参参数和质心的像素坐标来计算质心的实际坐标。 假设已经知道相机的外参参数 R 和 T,以及相机的内参参数 M,那么可以使用以下公式将质心的像素坐标转换为实际坐标: P = inv(M) * [u; v; 1] * d 其中,[u; v; 1] 是质心的像素坐标,d 是质心到相机的距离,P 是质心的实际坐标。 在代码中,可以添加以下代码来计算质心的实际坐标: d = 100; % 假设质心到相机的距离为100mm pixel_coord = [centroid(1); centroid(2); 1]; world_coord = inv(M) * pixel_coord * d; disp(world_coord); % 显示质心的实际坐标 注意,这里假设质心到相机的距离为100mm,实际情况中需要根据具体相机和场景进行调整。同时,也需要确保相机的内参参数和外参参数都是正确的。
相关问题

close all; clear all; clc; load ('6mm_matlab.mat') % 相机标定基本参数 M = cameraParams.IntrinsicMatrix'; R = cameraParams.RotationMatrices(:,:,1); T = cameraParams.TranslationVectors(1,:)'; UV = cameraParams.ReprojectedPoints(:,:,1); % 将标定板角点像素坐标转换成齐次 for i = 1:size(UV,1) UV_H(i,:) = [UV(i,:),1]; end % 将像素坐标系转换到像素坐标系:参考https://blog.csdn.net/qq_43222384/article/details/101516807 leftMatrix = inv(R)*inv(M)*UV_H'; rightMatrix = inv(R)*T; rightMatrix_H = repmat(rightMatrix(3),[1,size(UV,1)]); temp_s = rightMatrix_H./leftMatrix(3,:);%leftMatrix和rightMatrix_H表示相机内参矩阵和外参矩阵, %UV是像素坐标系下的二维点,CB_World是相机坐标系下的三维点。 N_rightMatrix = repmat(rightMatrix,1,size(UV,1)); CB_World = temp_s.*leftMatrix - N_rightMatrix; WorldPoint = cameraParams.WorldPoints';已知质心像素坐标求实际坐标

假设你已知质心在图像上的像素坐标为 (u,v),可以使用相机的标定参数将其转换为相机坐标系下的三维点坐标。 首先,将像素坐标转换为齐次坐标形式: ``` UV_H = [u, v, 1]; ``` 然后,根据相机的内参矩阵和外参矩阵,可以将像素坐标系下的点转换为相机坐标系下的点: ``` M = cameraParams.IntrinsicMatrix'; R = cameraParams.RotationMatrices(:,:,1); T = cameraParams.TranslationVectors(1,:)'; leftMatrix = inv(R) * inv(M) * UV_H'; rightMatrix = inv(R) * T; rightMatrix_H = repmat(rightMatrix(3), [1, size(UV_H, 2)]); temp_s = rightMatrix_H ./ leftMatrix(3,:); N_rightMatrix = repmat(rightMatrix, 1, size(UV_H, 2)); CB_Camera = temp_s .* leftMatrix - N_rightMatrix; ``` 最后,再将相机坐标系下的点转换为世界坐标系下的点,即: ``` WorldPoint = cameraParams.WorldPoints'; CB_World = R' * (CB_Camera - T); ``` 其中,`cameraParams.WorldPoints` 是标定板上角点的世界坐标系下的坐标,`CB_World` 是相机坐标系下的三维点,`R` 和 `T` 是相机的旋转矩阵和平移向量。

close all; clear all; clc;load ('6mm_matlab.mat') % 相机标定基本参数 M = cameraParams.IntrinsicMatrix'; R = cameraParams.RotationMatrices(:,:,1); T = cameraParams.TranslationVectors(1,:)'; UV = cameraParams.ReprojectedPoints(:,:,1); v = VideoReader('shoujilux7.mp4'); while hasFrame(v) frame = readFrame(v); gray_frame = rgb2gray(frame); % gamma校正 gamma = 1.5; gamma_corrected = imadjust(gray_frame,[],[],gamma); % 高斯滤波 sigma = 1; hsize = ceil(6*sigma); h = fspecial('gaussian', hsize, sigma); filtered_frame = imfilter(gamma_corrected, h); % Otsu阈值分割 T = graythresh(filtered_frame); [m, n] = size(filtered_frame); E = bwareaopen(im2bw(filtered_frame, T), round(m*n/1000), 8); % Canny边缘检测 canny_edge = edge(E, 'canny'); % 形态学膨胀 se = strel('disk', 2); dilated_edge = imdilate(canny_edge, se); % 连通域分析 stats = regionprops('table', dilated_edge, 'Area', 'Centroid'); % 筛选面积最大的连通区域 [~, idx] = max(stats.Area); centroid = stats.Centroid(idx, :); % 显示帧和质心 imshow(dilated_edge); hold on; plot(centroid(1), centroid(2), 'r+', 'MarkerSize', 10); hold off; 像素坐标转换为实际坐标显示,设计gui

可以使用MATLAB的GUI工具箱来设计一个简单的界面,实现像素坐标转换为实际坐标并显示。具体步骤如下: 1. 在命令窗口中输入 `guide` 打开GUI工具箱,创建一个新的GUI。 2. 在GUI编辑器中,添加一个静态文本框用于提示用户输入像素坐标,一个可编辑文本框用于输入像素坐标,一个按钮用于触发坐标转换操作,一个静态文本框用于显示转换后的实际坐标。 3. 在按钮的回调函数中,获取用户输入的像素坐标,转换为实际坐标,并显示在静态文本框中。 4. 在转换函数中,将像素坐标先转换为相机坐标系下的坐标,再通过相机参数矩阵和旋转平移向量将相机坐标系下的坐标转换为世界坐标系下的坐标。 5. 将转换函数和GUI界面整合起来,即可实现像素坐标转换为实际坐标并显示的功能。 下面是一个基本的GUI界面设计代码示例: ```matlab function varargout = pixel2world_gui(varargin) % PIXEL2WORLD_GUI MATLAB code for pixel2world_gui.fig % PIXEL2WORLD_GUI, by itself, creates a new PIXEL2WORLD_GUI or raises the existing % singleton*. % % H = PIXEL2WORLD_GUI returns the handle to a new PIXEL2WORLD_GUI or the handle to % the existing singleton*. % % PIXEL2WORLD_GUI('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in PIXEL2WORLD_GUI.M with the given input arguments. % % PIXEL2WORLD_GUI('Property','Value',...) creates a new PIXEL2WORLD_GUI or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before pixel2world_gui_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to pixel2world_gui_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help pixel2world_gui % Last Modified by GUIDE v2.5 19-Dec-2021 17:08:34 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @pixel2world_gui_OpeningFcn, ... 'gui_OutputFcn', @pixel2world_gui_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before pixel2world_gui is made visible. function pixel2world_gui_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to pixel2world_gui (see VARARGIN) % Choose default command line output for pixel2world_gui handles.output = hObject; % Update handles structure guidata(hObject, handles); % UIWAIT makes pixel2world_gui wait for user response (see UIRESUME) % uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = pixel2world_gui_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes on button press in convertBtn. function convertBtn_Callback(hObject, eventdata, handles) % hObject handle to convertBtn (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % get pixel coordinates from user input pixel_coords_str = get(handles.pixelCoordsEdit, 'String'); pixel_coords = str2num(pixel_coords_str); % convert pixel coordinates to world coordinates world_coords = pixel2world(pixel_coords); % display world coordinates set(handles.worldCoordsText, 'String', num2str(world_coords)); function pixelCoordsEdit_Callback(hObject, eventdata, handles) % hObject handle to pixelCoordsEdit (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of pixelCoordsEdit as text % str2double(get(hObject,'String')) returns contents of pixelCoordsEdit as a double % --- Executes during object creation, after setting all properties. function pixelCoordsEdit_CreateFcn(hObject, eventdata, handles) % hObject handle to pixelCoordsEdit (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function worldCoordsText_Callback(hObject, eventdata, handles) % hObject handle to worldCoordsText (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of worldCoordsText as text % str2double(get(hObject,'String')) returns contents of worldCoordsText as a double % --- Executes during object creation, after setting all properties. function worldCoordsText_CreateFcn(hObject, eventdata, handles) % hObject handle to worldCoordsText (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: text controls usually have a default uicontrol background color % of white. Change the background color to match the GUI color % if necessary. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end function world_coords = pixel2world(pixel_coords) % 相机标定基本参数 M = cameraParams.IntrinsicMatrix'; R = cameraParams.RotationMatrices(:,:,1); T = cameraParams.TranslationVectors(1,:)'; % 将像素坐标转换为相机坐标系下的坐标 x = pixel_coords(1); y = pixel_coords(2); z = 1; camera_coords = inv(M) * [x; y; z]; % 将相机坐标系下的坐标转换为世界坐标系下的坐标 world_coords = R' * (camera_coords - T); end ``` 使用这个GUI界面,用户可以在可编辑文本框中输入像素坐标,点击转换按钮后,程序将像素坐标转换为实际坐标并显示在静态文本框中。要使用这个GUI界面,可以将上述代码保存为一个.m文件,然后在命令窗口中输入 `pixel2world_gui` 来运行这个界面。

相关推荐

最新推荐

recommend-type

解决Tensorflow2.0 tf.keras.Model.load_weights() 报错处理问题

主要介绍了解决Tensorflow2.0 tf.keras.Model.load_weights() 报错处理问题,具有很好的参考价值,希望对大家有所帮助。一起跟随想过来看看吧
recommend-type

android手机应用源码Imsdroid语音视频通话源码.rar

android手机应用源码Imsdroid语音视频通话源码.rar
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

可见光定位LED及其供电硬件具体型号,广角镜头和探测器,实验设计具体流程步骤,

1. 可见光定位LED型号:一般可使用5mm或3mm的普通白色LED,也可以选择专门用于定位的LED,例如OSRAM公司的SFH 4715AS或Vishay公司的VLMU3500-385-120。 2. 供电硬件型号:可以使用常见的直流电源供电,也可以选择专门的LED驱动器,例如Meanwell公司的ELG-75-C或ELG-150-C系列。 3. 广角镜头和探测器型号:一般可采用广角透镜和CMOS摄像头或光电二极管探测器,例如Omron公司的B5W-LA或Murata公司的IRS-B210ST01。 4. 实验设计流程步骤: 1)确定实验目的和研究对象,例如车辆或机器人的定位和导航。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

解释这行代码 c = ((double)rand() / RAND_MAX) * (a + b - fabs(a - b)) + fabs(a - b);

这行代码的作用是随机生成一个浮点数,范围在 a 和 b 之间(包括 a 和 b)。 其中,`rand()` 函数是 C 语言标准库中的一个函数,用于生成一个伪随机整数。`RAND_MAX` 是一个常量,它表示 `rand()` 函数生成的随机数的最大值。 因此,`(double)rand() / RAND_MAX` 表示生成的随机数在 [0, 1] 之间的浮点数。 然后,将这个随机数乘上 `(a - b) - fabs(a - b)`,再加上 `fabs(a - b)`。 `fabs(a - b)` 是 C 语言标准库中的一个函数,用于计算一个数的绝对值。因此,`fabs(a - b)