flume将csv文件写入mysql,自定义sink

时间: 2023-06-25 21:04:35 浏览: 152
要将CSV文件写入MySQL,可以使用Flume的自定义Sink。以下是一些基本步骤: 1. 创建一个自定义Sink类,继承AbstractSink类。 2. 在该类中实现process方法,在该方法中编写将CSV文件数据写入MySQL的逻辑。 3. 在Flume配置文件中指定自定义Sink类,并设置相关参数,例如CSV文件路径、MySQL连接信息等。 下面是一个简单的示例: ```java public class CsvToMysqlSink extends AbstractSink { private String csvPath; private String mysqlUrl; private String mysqlUsername; private String mysqlPassword; private String mysqlTable; private Connection connection; private PreparedStatement statement; @Override public void configure(Context context) { csvPath = context.getString("csvPath"); mysqlUrl = context.getString("mysqlUrl"); mysqlUsername = context.getString("mysqlUsername"); mysqlPassword = context.getString("mysqlPassword"); mysqlTable = context.getString("mysqlTable"); } @Override public void start() { try { Class.forName("com.mysql.jdbc.Driver"); connection = DriverManager.getConnection(mysqlUrl, mysqlUsername, mysqlPassword); statement = connection.prepareStatement("INSERT INTO " + mysqlTable + " VALUES (?, ?, ?)"); } catch (Exception e) { e.printStackTrace(); } } @Override public void stop() { try { statement.close(); connection.close(); } catch (Exception e) { e.printStackTrace(); } } @Override public Status process() throws EventDeliveryException { Status status = null; try { File csvFile = new File(csvPath); BufferedReader br = new BufferedReader(new FileReader(csvFile)); String line; while ((line = br.readLine()) != null) { String[] values = line.split(","); statement.setString(1, values[0]); statement.setString(2, values[1]); statement.setString(3, values[2]); statement.executeUpdate(); } br.close(); status = Status.READY; } catch (Exception e) { e.printStackTrace(); status = Status.BACKOFF; } return status; } } ``` 在Flume配置文件中,可以这样指定自定义Sink类: ```properties agent.sinks.mysqlSink.type = com.example.CsvToMysqlSink agent.sinks.mysqlSink.csvPath = /path/to/csv/file.csv agent.sinks.mysqlSink.mysqlUrl = jdbc:mysql://localhost:3306/mydatabase agent.sinks.mysqlSink.mysqlUsername = myusername agent.sinks.mysqlSink.mysqlPassword = mypassword agent.sinks.mysqlSink.mysqlTable = mytable ``` 这个示例假设CSV文件每行有三个值,分别对应MySQL表中的三个字段。在process方法中,将读取CSV文件中的每一行,并将其分割为三个值,然后使用PreparedStatement将这些值插入到MySQL表中。 注意,这个示例没有包含一些必要的异常处理和错误处理逻辑,需要根据实际情况进行完善。
阅读全文

相关推荐

以下是一个flume的conf文件,请帮我逐行解释一下代码:“#定义三大组件的名称 a.sources = r a.sinks = k1 k2 k3 a.channels = c1 c2 c3 #将数据流复制给所有channel a.sources.r.selector.type = replicating  # 配置Source组件 a.sources.r.type = exec a.sources.r.command = cat /home/bit/novel/novel.csv # kafka a.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink a.sinks.k1.kafka.topic = data a.sinks.k1.kafka.bootstrap.servers = localhost:9092 a.sinks.k1.kafka.flumeBatchSize = 20 a.sinks.k1.kafka.producer.acks = 1 a.sinks.k1.kafka.producer.linger.ms = 1 a.sinks.k1.kafka.producer.compression.type = snappy a.channels.c1.type = memory a.channels.c1.capacity = 100000 a.channels.c1.transactionCapacity = 100 # mysql a.sinks.k2.type =com.us.flume.MysqlSink a.sinks.k2.hostname=localhost a.sinks.k2.port=3306 a.sinks.k2.databaseName=novel a.sinks.k2.tableName=table1 a.sinks.k2.user=bit a.sinks.k2.password=123456 a.channels.c2.type = memory a.channels.c2.capacity = 100000 a.channels.c2.transactionCapactiy = 2000 # hdfs a.sinks.k3.type = hdfs a.sinks.k3.hdfs.path = hdfs://localhost:9000/user/bit/novel #积攒多少个Event才flush到HDFS一次 a.sinks.k3.hdfs.batchSize = 100 #设置文件类型,可支持压缩 a.sinks.k3.hdfs.fileType = DataStream #多久生成一个新的文件 a.sinks.k3.hdfs.rollInterval = 5 a.channels.c3.type = memory a.channels.c3.capacity =100000 a.channels.c3.transactionCapacity = 100 # Bind the source and sink to the channel a.sources.r.channels = c1 c2 c3 a.sinks.k1.channel = c1 a.sinks.k2.channel = c2 a.sinks.k3.channel = c3”

#定义三大组件的名称 a.sources = r a.sinks = k1 k2 k3 a.channels = c1 c2 c3 #将数据流复制给所有channel a.sources.r.selector.type = replicating  # 配置Source组件 a.sources.r.type = exec #exec表示数据源来自运行给定的Unix命令后生成的数据 a.sources.r.command = cat /home/bit/ys/hngyzd.csv # kafka a.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink a.sinks.k1.kafka.topic = data a.sinks.k1.kafka.bootstrap.servers = localhost:9092 a.sinks.k1.kafka.flumeBatchSize = 20 a.sinks.k1.kafka.producer.acks = 1 a.sinks.k1.kafka.producer.linger.ms = 1 a.sinks.k1.kafka.producer.compression.type = snappy a.channels.c1.type = memory a.channels.c1.capacity = 100000 a.channels.c1.transactionCapacity = 100 # mysql a.sinks.k2.type =com.us.flume.MysqlSink a.sinks.k2.hostname=localhost a.sinks.k2.port=3306 a.sinks.k2.databaseName=ys a.sinks.k2.tableName=table1 a.sinks.k2.user=bit a.sinks.k2.password=123456 a.channels.c2.type = memory a.channels.c2.capacity = 100000 a.channels.c2.transactionCapactiy = 2000 # hdfs a.sinks.k3.type = hdfs a.sinks.k3.hdfs.path = hdfs://localhost:9000/user/bit/ys #积攒多少个Event才flush到HDFS一次 a.sinks.k3.hdfs.batchSize = 100 #设置文件类型,可支持压缩 a.sinks.k3.hdfs.fileType = DataStream #多久生成一个新的文件 a.sinks.k3.hdfs.rollInterval = 5 a.channels.c3.type = memory a.channels.c3.capacity =100000 a.channels.c3.transactionCapacity = 100 # Bind the source and sink to the channel a.sources.r.channels = c1 c2 c3 a.sinks.k1.channel = c1 a.sinks.k2.channel = c2 a.sinks.k3.channel = c3

最新推荐

recommend-type

kafka+flume 实时采集oracle数据到hive中.docx

基于Kafka+Flume实时采集Oracle数据到Hive中 一、Kafka获取Oracle...Kafka能够实时地从Oracle数据库中提取日志信息,而Flume能够实时地将数据写入到HDFS中。最后,Hive可以从HDFS中读取数据,并将其存储到Hive表中。
recommend-type

47_Flume、Logstash、Filebeat调研报告

Source负责从数据源获取数据,Sink则将数据传送到下一级agent或最终存储系统,而Channel作为内部缓冲区在两者之间传输数据。Flume支持多种source和sink类型,如netcat、avro、hdfs等,能够灵活适应不同的数据源和...
recommend-type

flume+kafka+storm最完整讲解

Flume 的配置文件 `flume-kafka-conf.properties` 中,source 使用 spooldir 类型,这意味着 Flume 将监视一个指定的目录,一旦检测到新文件,它就会读取并传输这些文件。sink 则配置为 `org.apache.flume.sink....
recommend-type

Kafka接收Flume数据并存储至HDFS.docx

Flume提供了高可扩展性和可靠性,支持多种数据源和sink,能够满足不同应用场景的需求。 HDFS(Hadoop Distributed File System)是Hadoop项目下的分布式文件系统,提供了高可扩展性和可靠性,能够存储大量数据。...
recommend-type

【BP回归预测】蜣螂算法优化BP神经网络DBO-BP光伏数据预测(多输入单输出)【Matlab仿真 5175期】.zip

CSDN Matlab研究室上传的资料均有对应的仿真结果图,仿真结果图均是完整代码运行得出,完整代码亲测可用,适合小白; 1、完整的代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
recommend-type

PureMVC AS3在Flash中的实践与演示:HelloFlash案例分析

资源摘要信息:"puremvc-as3-demo-flash-helloflash:PureMVC AS3 Flash演示" PureMVC是一个开源的、轻量级的、独立于框架的用于MVC(模型-视图-控制器)架构模式的实现。它适用于各种应用程序,并且在多语言环境中得到广泛支持,包括ActionScript、C#、Java等。在这个演示中,使用了ActionScript 3语言进行Flash开发,展示了如何在Flash应用程序中运用PureMVC框架。 演示项目名为“HelloFlash”,它通过一个简单的动画来展示PureMVC框架的工作方式。演示中有一个小蓝框在灰色房间内移动,并且可以通过多种方式与之互动。这些互动包括小蓝框碰到墙壁改变方向、通过拖拽改变颜色和大小,以及使用鼠标滚轮进行缩放等。 在技术上,“HelloFlash”演示通过一个Flash电影的单帧启动应用程序。启动时,会发送通知触发一个启动命令,然后通过命令来初始化模型和视图。这里的视图组件和中介器都是动态创建的,并且每个都有一个唯一的实例名称。组件会与他们的中介器进行通信,而中介器则与代理进行通信。代理用于保存模型数据,并且中介器之间通过发送通知来通信。 PureMVC框架的核心概念包括: - 视图组件:负责显示应用程序的界面部分。 - 中介器:负责与视图组件通信,并处理组件之间的交互。 - 代理:负责封装数据或业务逻辑。 - 控制器:负责管理命令的分派。 在“HelloFlash”中,我们可以看到这些概念的具体实现。例如,小蓝框的颜色变化,是由代理来处理的模型数据;而小蓝框的移动和缩放则是由中介器与组件之间的通信实现的。所有这些操作都是在PureMVC框架的规则和指导原则下完成的。 在Flash开发中,ActionScript 3是主要的编程语言,它是一种面向对象的语言,并且支持复杂的事件处理和数据管理。Flash平台本身提供了一套丰富的API和框架,使得开发者可以创建动态的、交互性强的网络应用。 最后,我们还看到了一个压缩包文件的名称列表“puremvc-as3-demo-flash-helloflash-master”,这表明该演示项目的源代码应该可以在该压缩包中找到,并且可以在支持ActionScript 3的开发环境中进行分析和学习。开发者可以通过这个项目的源代码来深入了解PureMVC框架在Flash应用中的应用,并且学习到如何实现复杂的用户交互、数据处理和事件通信。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

YRC1000 EtherNet_IP通信协议:掌握连接与数据交换的6个关键策略

![YRC1000 EtherNetIP通信功能说明书](https://5.imimg.com/data5/SELLER/Default/2022/12/EE/XV/JL/4130645/yrc1000-csra-cdc101aa-3--1000x1000.jpg) # 摘要 YRC1000 EtherNet/IP通信协议作为工业自动化领域的重要技术之一,本论文对其进行了系统性的介绍和分析。从通信连接策略的实施到数据交换机制的详细阐述,再到高级应用与实践案例的深入探讨,本文全面覆盖了YRC1000的操作原理、配置方法、安全性和性能监控等方面。通过对各种典型应用场景的案例分析,本文不仅总结了
recommend-type

如何设置 OpenFileDialog 用户只能在固定文件夹及其子文件夹里选择文件

在Windows应用程序中,如果你想要限制OpenFileDialog让用户只能在特定的文件夹及其子文件夹中选择文件,你可以通过设置`InitialDirectory`属性和`Filter`属性来实现。以下是步骤: 1. 创建一个`OpenFileDialog`实例: ```csharp OpenFileDialog openFileDialog = new OpenFileDialog(); ``` 2. 设置初始目录(`InitialDirectory`)为你要限制用户选择的起始文件夹,例如: ```csharp string restrictedFolder = "C:\\YourR
recommend-type

掌握Makefile多目标编译与清理操作

资源摘要信息:"makefile学习用测试文件.rar" 知识点: 1. Makefile的基本概念: Makefile是一个自动化编译的工具,它可以根据文件的依赖关系进行判断,只编译发生变化的文件,从而提高编译效率。Makefile文件中定义了一系列的规则,规则描述了文件之间的依赖关系,并指定了如何通过命令来更新或生成目标文件。 2. Makefile的多个目标: 在Makefile中,可以定义多个目标,每个目标可以依赖于其他的文件或目标。当执行make命令时,默认情况下会构建Makefile中的第一个目标。如果你想构建其他的特定目标,可以在make命令后指定目标的名称。 3. Makefile的单个目标编译和删除: 在Makefile中,单个目标的编译通常涉及依赖文件的检查以及编译命令的执行。删除操作则通常用clean规则来定义,它不依赖于任何文件,但执行时会删除所有编译生成的目标文件和中间文件,通常不包含源代码文件。 4. Makefile中的伪目标: 伪目标并不是一个文件名,它只是一个标签,用来标识一个命令序列,通常用于执行一些全局性的操作,比如清理编译生成的文件。在Makefile中使用特殊的伪目标“.PHONY”来声明。 5. Makefile的依赖关系和规则: 依赖关系说明了一个文件是如何通过其他文件生成的,规则则是对依赖关系的处理逻辑。一个规则通常包含一个目标、它的依赖以及用来更新目标的命令。当依赖的时间戳比目标的新时,相应的命令会被执行。 6. Linux环境下的Makefile使用: Makefile的使用在Linux环境下非常普遍,因为Linux是一个类Unix系统,而make工具起源于Unix系统。在Linux环境中,通过终端使用make命令来执行Makefile中定义的规则。Linux中的make命令有多种参数来控制执行过程。 7. Makefile中变量和模式规则的使用: 在Makefile中可以定义变量来存储一些经常使用的字符串,比如编译器的路径、编译选项等。模式规则则是一种简化多个相似规则的方法,它使用模式来匹配多个目标,适用于文件名有规律的情况。 8. Makefile的学习资源: 学习Makefile可以通过阅读相关的书籍、在线教程、官方文档等资源,推荐的书籍有《Managing Projects with GNU Make》。对于初学者来说,实际编写和修改Makefile是掌握Makefile的最好方式。 9. Makefile的调试和优化: 当Makefile较为复杂时,可能出现预料之外的行为,此时需要调试Makefile。可以使用make的“-n”选项来预览命令的执行而不实际运行它们,或者使用“-d”选项来输出调试信息。优化Makefile可以减少不必要的编译,提高编译效率,例如使用命令的输出作为条件判断。 10. Makefile的学习用测试文件: 对于学习Makefile而言,实际操作是非常重要的。通过提供一个测试文件,可以更好地理解Makefile中目标的编译和删除操作。通过编写相应的Makefile,并运行make命令,可以观察目标是如何根据依赖被编译和在需要时如何被删除的。 通过以上的知识点,你可以了解到Makefile的基本用法和一些高级技巧。在Linux环境下,利用Makefile可以有效地管理项目的编译过程,提高开发效率。对于初学者来说,通过实际编写Makefile并结合测试文件进行练习,将有助于快速掌握Makefile的使用。