while True: VARS[var.strip()] = val.strip() print eval(line) var, val = line.strip().split("=") import sys line = sys.stdin.readline() for key in VARS: line = line.replace(key, VARS[key]) line = sys.stdin.readline().strip() while True: VARS = {} if line.strip() == '%%%': break 重排一下代码
时间: 2024-02-18 12:00:31 浏览: 142
以下是重排后的代码:
```
import sys
VARS = {}
while True:
line = sys.stdin.readline().strip()
if line.strip() == '%%%':
break
var, val = line.strip().split("=")
VARS[var.strip()] = val.strip()
for key in VARS:
line = line.replace(key, VARS[key])
print(eval(line))
VARS = {}
```
重排后,代码结构更加清晰,更易于阅读和理解。同时,也能更好地体现代码的逻辑和执行顺序。
相关问题
对下面代码每一步含义进行注释 def insert(self, val): if not self.root: self.root = TreeNode(val) return cur = self.root while cur: if val < cur.val: if not cur.left: cur.left = TreeNode(val) return else: cur = cur.left else: if not cur.right: cur.right = TreeNode(val) return else: cur = cur.right
这段代码是二叉搜索树的插入操作代码,具体注释如下:
```
def insert(self, val): # 定义插入操作函数,val为要插入的节点值
if not self.root: # 如果二叉搜索树为空,则将要插入的节点作为根节点
self.root = TreeNode(val) # 创建根节点
return # 返回
cur = self.root # 如果二叉搜索树不为空,则从根节点开始查找
while cur: # 进入循环,直到找到合适的插入位置或者查找到叶子节点
if val < cur.val: # 如果要插入的值小于当前节点值
if not cur.left: # 如果当前节点的左子节点为空,则将要插入的节点作为当前节点的左子节点
cur.left = TreeNode(val) # 创建左子节点
return # 返回
else: # 如果当前节点的左子节点不为空,则继续向左查找
cur = cur.left # 将当前节点设置为左子节点,继续查找
else: # 如果要插入的值大于等于当前节点值
if not cur.right: # 如果当前节点的右子节点为空,则将要插入的节点作为当前节点的右子节点
cur.right = TreeNode(val) # 创建右子节点
return # 返回
else: # 如果当前节点的右子节点不为空,则继续向右查找
cur = cur.right # 将当前节点设置为右子节点,继续查找
```
总体来说,这段代码的作用是将一个节点插入到二叉搜索树中,并保证插入后仍然是二叉搜索树。
对下面代码每一步含义进行注释class BST: def __init__(self): self.root = None def insert(self, val): if not self.root: self.root = TreeNode(val) return cur = self.root while cur: if val < cur.val: if not cur.left: cur.left = TreeNode(val) return else: cur = cur.left else: if not cur.right: cur.right = TreeNode(val) return else: cur = cur.right
这段代码实现了二叉搜索树(BST)的插入操作,以下是每一步的注释:
```
class BST: # 定义一个二叉搜索树的类
def __init__(self): # 初始化函数,创建一个空的二叉搜索树
self.root = None # 根节点为空
def insert(self, val): # 定义插入操作的方法
if not self.root: # 如果根节点为空,则将待插入值作为根节点
self.root = TreeNode(val)
return
cur = self.root # cur指向当前节点,从根节点开始遍历
while cur: # 循环遍历到合适的插入位置
if val < cur.val: # 如果待插入值小于当前节点的值
if not cur.left: # 如果当前节点左子树为空,将待插入值作为当前节点的左儿子
cur.left = TreeNode(val)
return
else: # 否则继续向左子树遍历
cur = cur.left
else: # 如果待插入值大于等于当前节点的值
if not cur.right: # 如果当前节点右子树为空,将待插入值作为当前节点的右儿子
cur.right = TreeNode(val)
return
else: # 否则继续向右子树遍历
cur = cur.right
```
其中,TreeNode是二叉搜索树中的一个节点类,每个节点包含一个值和左右两个儿子节点。在这段代码中没有给出该类的定义。
阅读全文
相关推荐

















