while True: VARS[var.strip()] = val.strip() print eval(line) var, val = line.strip().split("=") import sys line = sys.stdin.readline() for key in VARS: line = line.replace(key, VARS[key]) line = sys.stdin.readline().strip() while True: VARS = {} if line.strip() == '%%%': break 重排一下代码

时间: 2024-02-18 20:00:31 浏览: 21
以下是重排后的代码: ``` import sys VARS = {} while True: line = sys.stdin.readline().strip() if line.strip() == '%%%': break var, val = line.strip().split("=") VARS[var.strip()] = val.strip() for key in VARS: line = line.replace(key, VARS[key]) print(eval(line)) VARS = {} ``` 重排后,代码结构更加清晰,更易于阅读和理解。同时,也能更好地体现代码的逻辑和执行顺序。
相关问题

local BlackMarketModel = {} function BlackMarketModel:initData() self.blackMarketOpenTimestamp = ppdata.Base:getBlackMarketOpenTime() self.blackMarketRefreshTimes = ppdata.Base:getBlackMarketRefreshTimes() self.isGoToBlackMarketLayer = false end function BlackMarketModel:getBlackMarketOpenTimestamp() return self.blackMarketOpenTimestamp or 0 end function BlackMarketModel:setBlackMarketOpenTimestamp(val) self.blackMarketOpenTimestamp = val ppdata.Base:setBlackMarketOpenTime(val) end function BlackMarketModel:getBlackMarketRefreshTimes() return self.blackMarketRefreshTimes end function BlackMarketModel:setBlackMarketRefreshTimes(val) self.blackMarketRefreshTimes = val ppdata.Base:setBlackMarketRefreshTimes(val) end function BlackMarketModel:getIsGoToBlackMarketLayer() return self.isGoToBlackMarketLayer end function BlackMarketModel:setIsGoToBlackMarketLayer(val) self.isGoToBlackMarketLayer = val end return BlackMarketModel转成TS

```typescript interface BlackMarketModel { blackMarketOpenTimestamp: number | undefined; blackMarketRefreshTimes: number | undefined; isGoToBlackMarketLayer: boolean; } const BlackMarketModel = { initData(this: BlackMarketModel): void { this.blackMarketOpenTimestamp = ppdata.Base.getBlackMarketOpenTime(); this.blackMarketRefreshTimes = ppdata.Base.getBlackMarketRefreshTimes(); this.isGoToBlackMarketLayer = false; }, getBlackMarketOpenTimestamp(this: BlackMarketModel): number | undefined { return this.blackMarketOpenTimestamp; }, setBlackMarketOpenTimestamp(this: BlackMarketModel, val: number): void { this.blackMarketOpenTimestamp = val; ppdata.Base.setBlackMarketOpenTime(val); }, getBlackMarketRefreshTimes(this: BlackMarketModel): number | undefined { return this.blackMarketRefreshTimes; }, setBlackMarketRefreshTimes(this: BlackMarketModel, val: number): void { this.blackMarketRefreshTimes = val; ppdata.Base.setBlackMarketRefreshTimes(val); }, getIsGoToBlackMarketLayer(this: BlackMarketModel): boolean { return this.isGoToBlackMarketLayer; }, setIsGoToBlackMarketLayer(this: BlackMarketModel, val: boolean): void { this.isGoToBlackMarketLayer = val; }, }; export default BlackMarketModel; ```

对下面代码每一步含义进行注释 def insert(self, val): if not self.root: self.root = TreeNode(val) return cur = self.root while cur: if val < cur.val: if not cur.left: cur.left = TreeNode(val) return else: cur = cur.left else: if not cur.right: cur.right = TreeNode(val) return else: cur = cur.right

这段代码是二叉搜索树的插入操作代码,具体注释如下: ``` def insert(self, val): # 定义插入操作函数,val为要插入的节点值 if not self.root: # 如果二叉搜索树为空,则将要插入的节点作为根节点 self.root = TreeNode(val) # 创建根节点 return # 返回 cur = self.root # 如果二叉搜索树不为空,则从根节点开始查找 while cur: # 进入循环,直到找到合适的插入位置或者查找到叶子节点 if val < cur.val: # 如果要插入的值小于当前节点值 if not cur.left: # 如果当前节点的左子节点为空,则将要插入的节点作为当前节点的左子节点 cur.left = TreeNode(val) # 创建左子节点 return # 返回 else: # 如果当前节点的左子节点不为空,则继续向左查找 cur = cur.left # 将当前节点设置为左子节点,继续查找 else: # 如果要插入的值大于等于当前节点值 if not cur.right: # 如果当前节点的右子节点为空,则将要插入的节点作为当前节点的右子节点 cur.right = TreeNode(val) # 创建右子节点 return # 返回 else: # 如果当前节点的右子节点不为空,则继续向右查找 cur = cur.right # 将当前节点设置为右子节点,继续查找 ``` 总体来说,这段代码的作用是将一个节点插入到二叉搜索树中,并保证插入后仍然是二叉搜索树。

相关推荐

import sys from PyQt5.QtCore import * from PyQt5.QtGui import * from PyQt5.QtWidgets import * from PyQt5.QtChart import * class RandomGenerator(QObject): dataReady = pyqtSignal(int) stopSignal = pyqtSignal() def init(self): super().init() self.queue = [] self.count = 0 def start(self): while True: val = random.randint(1, 100) if val < 50: self.queue.append(val) if len(self.queue) == 1: self.dataReady.emit(val) else: self.count += 1 if self.count >= 2: self.stopSignal.emit() break class ChartDrawer(QObject): finished = pyqtSignal() def init(self, queue): super().init() self.queue = queue self.series = QLineSeries() def start(self): while True: if len(self.queue) > 0: val = self.queue.pop(0) self.series.append(self.series.count(), val) else: break self.finished.emit() class MainWindow(QMainWindow): def init(self): super().init() self.generator = RandomGenerator() self.drawer = ChartDrawer(self.generator.queue) self.chartView = QChartView() self.chart = QChart() self.chart.addSeries(self.drawer.series) self.chart.createDefaultAxes() self.chartView.setChart(self.chart) self.startButton = QPushButton("Start") self.startButton.clicked.connect(self.start) self.stopButton = QPushButton("Stop") self.stopButton.clicked.connect(self.stop) self.stopButton.setEnabled(False) self.statusBar().showMessage("Ready") layout = QVBoxLayout() layout.addWidget(self.chartView) layout.addWidget(self.startButton) layout.addWidget(self.stopButton) widget = QWidget() widget.setLayout(layout) self.setCentralWidget(widget) def start(self): self.statusBar().showMessage("Running") self.generatorThread = QThread() self.generator.moveToThread(self.generatorThread) self.generatorThread.started.connect(self.generator.start) self.generator.dataReady.connect(self.handleDataReady) self.generator.stopSignal.connect(self.handleStopSignal) self.generatorThread.start() self.drawerThread = QThread() self.drawer.moveToThread(self.drawerThread) self.drawer.finished.connect(self.handleDrawerFinished) self.drawerThread.start() self.startButton.setEnabled(False) self.stopButton.setEnabled(True) def stop(self): self.statusBar().showMessage("Stopping") self.generator.stopSignal.emit() self.generatorThread.quit() self.drawerThread.quit() self.startButton.setEnabled(True) self.stopButton.setEnabled(False) def handleDataReady(self, val): self.drawer.series.append(self.drawer.series.count(), val) def handleStopSignal(self): self.generatorThread.quit() def handleDrawerFinished(self): self.chartView.update() self.statusBar().showMessage("Finished") self.startButton.setEnabled(True) self.stopButton.setEnabled(False) if name == 'main': app = QApplication(sys.argv) window = MainWindow() window.show() sys.exit(app.exec_()) 请检查上述代码为何没有画图并展示

# 定义二叉搜索树节点类 class TreeNode: def __init__(self, val): self.val = val self.left = None self.right = None # 插入节点 def insert(root, val): if not root: return TreeNode(val) if val < root.val: root.left = insert(root.left, val) else: root.right = insert(root.right, val) return root # 顺序遍历二叉搜索树 def inorderTraversal(root): res = [] if not root: return res res += inorderTraversal(root.left) res.append(root.val) res += inorderTraversal(root.right) return res # 将二叉搜索树转换为双向循环链表 def treeToDoublyList(root): if not root: return None inorder = inorderTraversal(root) head = cur = TreeNode(None) for val in inorder: cur.right = TreeNode(val) cur.right.left = cur cur = cur.right head.right.left = cur cur.right = head.right return head.right # 打印二叉搜索树 def printTree(root, space): if not root: return space += 5 printTree(root.right, space) print(' ' * space, root.val) printTree(root.left, space) # 打印双向循环链表 def printList(head): if not head: return print(head.val, end=' <--> ') cur = head.right while cur != head: print(cur.val, end=' <--> ') cur = cur.right print() # 测试 if __name__ == '__main__': root = None values = [321,34,1443,325,532,321,5,35,36,66] for val in values: root = insert(root, val) bstree = root print('Binary Search Tree:') printTree(bstree, 0) dllist = treeToDoublyList(bstree) print('Doubly Linked List:') printList(dllist)将代码中的value从在代码中输入改为让用户输入

最新推荐

recommend-type

解决keras,val_categorical_accuracy:,0.0000e+00问题

主要介绍了解决keras,val_categorical_accuracy:,0.0000e+00问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

ansys maxwell

ansys maxwell
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

导入numpy库,创建两个包含9个随机数的3*3的矩阵,将两个矩阵分别打印出来,计算两个数组的点积并打印出来。(random.randn()、dot()函数)

可以的,以下是代码实现: ```python import numpy as np # 创建两个包含9个随机数的3*3的矩阵 matrix1 = np.random.randn(3, 3) matrix2 = np.random.randn(3, 3) # 打印两个矩阵 print("Matrix 1:\n", matrix1) print("Matrix 2:\n", matrix2) # 计算两个数组的点积并打印出来 dot_product = np.dot(matrix1, matrix2) print("Dot product:\n", dot_product) ``` 希望