如何在model.compile里的loss='categorical_crossentropy'的基础上利用loss_weights加上源域为Xs,目标域为Xt的MMD损失
时间: 2024-02-12 21:08:45 浏览: 171
Keras中的多分类损失函数用法categorical_crossentropy
可以在 `model.compile` 中使用 `loss_weights` 参数来加入 MMD 损失:
首先,需要定义一个 MMD 损失函数:
```python
import tensorflow as tf
import numpy as np
def mmd_loss(source, target, kernel=rbf_kernel, sigma=1.0):
"""
Computes the Maximum Mean Discrepancy (MMD) between source and target domains.
:param source: Tensor, the source domain data.
:param target: Tensor, the target domain data.
:param kernel: Function, the kernel function to use (default: RBF kernel).
:param sigma: Float, the sigma parameter for the RBF kernel.
:return: Tensor, the MMD loss between source and target domains.
"""
source_kernel = kernel(source, source, sigma=sigma)
target_kernel = kernel(target, target, sigma=sigma)
source_target_kernel = kernel(source, target, sigma=sigma)
loss = tf.reduce_mean(source_kernel) + tf.reduce_mean(target_kernel) - 2 * tf.reduce_mean(source_target_kernel)
return loss
```
其中,`rbf_kernel` 是高斯核函数,可以使用 `numpy` 实现:
```python
def rbf_kernel(X, Y, sigma=1.0):
"""
Computes the RBF kernel between two matrices.
:param X: Tensor, the first matrix.
:param Y: Tensor, the second matrix.
:param sigma: Float, the sigma parameter for the RBF kernel.
:return: Tensor, the RBF kernel between X and Y.
"""
XX = tf.matmul(X, tf.transpose(X))
XY = tf.matmul(X, tf.transpose(Y))
YY = tf.matmul(Y, tf.transpose(Y))
X_sqnorms = tf.linalg.diag_part(XX)
Y_sqnorms = tf.linalg.diag_part(YY)
return tf.exp(-0.5 / sigma ** 2 * (
tf.reshape(X_sqnorms, (-1, 1)) - 2 * XY + tf.reshape(Y_sqnorms, (1, -1))))
```
然后,在 `model.compile` 中加入 MMD 损失:
```python
model.compile(optimizer=optimizer,
loss={'output': 'categorical_crossentropy', 'mmd': mmd_loss},
loss_weights={'output': 1.0, 'mmd': lambda _: mmd_weight})
```
其中,`mmd_weight` 是一个超参数,用于调整 MMD 损失的权重。
在训练模型时,需要将源域和目标域的数据分别传入模型,然后将 MMD 损失乘以权重加入总损失中:
```python
history = model.fit({'input': Xs, 'input_tgt': Xt},
{'output': Ys, 'mmd': tf.zeros(1)},
batch_size=batch_size,
epochs=epochs,
verbose=1,
callbacks=callbacks_list,
validation_data=({'input': Xs_val, 'input_tgt': Xt_val},
{'output': Ys_val, 'mmd': tf.zeros(1)}))
for epoch in history.history.keys():
if epoch.startswith('val_'):
continue
mmd_loss_train = mmd_weight * mmd_loss(Xs, Xt)
mmd_loss_val = mmd_weight * mmd_loss(Xs_val, Xt_val)
print(f'{epoch}: {history.history[epoch][-1]:.4f} (train), {history.history["val_" + epoch][-1]:.4f} (val), '
f'{mmd_loss_train:.4f} (mmd train), {mmd_loss_val:.4f} (mmd val)')
```
这样就可以在训练模型时加入源域和目标域的 MMD 损失了。
阅读全文