keras.layers.BatchNormalization(momentum = 0.8),是什么意思
时间: 2023-03-20 15:03:35 浏览: 146
keras.layers.BatchNormalization(momentum=0.8)是一个在Keras深度学习框架中用于实现批量标准化的层。其中,momentum参数是指动量,它控制着每个批次标准化的结果对于前面批次标准化结果的贡献。具体来说,这里的动量指的是滑动平均的动量,用于计算每个批次的均值和方差。在实际使用中,通常将momentum参数设置为一个较小的值,例如0.8,以实现更平滑的标准化结果。
相关问题
下面代码在tensorflow中出现了init() missing 1 required positional argument: 'cell'报错: class Model(): def init(self): self.img_seq_shape=(10,128,128,3) self.img_shape=(128,128,3) self.train_img=dataset # self.test_img=dataset_T patch = int(128 / 2 ** 4) self.disc_patch = (patch, patch, 1) self.optimizer=tf.keras.optimizers.Adam(learning_rate=0.001) self.build_generator=self.build_generator() self.build_discriminator=self.build_discriminator() self.build_discriminator.compile(loss='binary_crossentropy', optimizer=self.optimizer, metrics=['accuracy']) self.build_generator.compile(loss='binary_crossentropy', optimizer=self.optimizer) img_seq_A = Input(shape=(10,128,128,3)) #输入图片 img_B = Input(shape=self.img_shape) #目标图片 fake_B = self.build_generator(img_seq_A) #生成的伪目标图片 self.build_discriminator.trainable = False valid = self.build_discriminator([img_seq_A, fake_B]) self.combined = tf.keras.models.Model([img_seq_A, img_B], [valid, fake_B]) self.combined.compile(loss=['binary_crossentropy', 'mse'], loss_weights=[1, 100], optimizer=self.optimizer,metrics=['accuracy']) def build_generator(self): def res_net(inputs, filters): x = inputs net = conv2d(x, filters // 2, (1, 1), 1) net = conv2d(net, filters, (3, 3), 1) net = net + x # net=tf.keras.layers.LeakyReLU(0.2)(net) return net def conv2d(inputs, filters, kernel_size, strides): x = tf.keras.layers.Conv2D(filters, kernel_size, strides, 'same')(inputs) x = tf.keras.layers.BatchNormalization()(x) x = tf.keras.layers.LeakyReLU(alpha=0.2)(x) return x d0 = tf.keras.layers.Input(shape=(10, 128, 128, 3)) out= ConvRNN2D(filters=32, kernel_size=3,padding='same')(d0) out=tf.keras.layers.Conv2D(3,1,1,'same')(out) return keras.Model(inputs=d0, outputs=out) def build_discriminator(self): def d_layer(layer_input, filters, f_size=4, bn=True): d = tf.keras.layers.Conv2D(filters, kernel_size=f_size, strides=2, padding='same')(layer_input) if bn: d = tf.keras.layers.BatchNormalization(momentum=0.8)(d) d = tf.keras.layers.LeakyReLU(alpha=0.2)(d) return d img_A = tf.keras.layers.Input(shape=(10, 128, 128, 3)) img_B = tf.keras.layers.Input(shape=(128, 128, 3)) df = 32 lstm_out = ConvRNN2D(filters=df, kernel_size=4, padding="same")(img_A) lstm_out = tf.keras.layers.LeakyReLU(alpha=0.2)(lstm_out) combined_imgs = tf.keras.layers.Concatenate(axis=-1)([lstm_out, img_B]) d1 = d_layer(combined_imgs, df)#64 d2 = d_layer(d1, df * 2)#32 d3 = d_layer(d2, df * 4)#16 d4 = d_layer(d3, df * 8)#8 validity = tf.keras.layers.Conv2D(1, kernel_size=4, strides=1, padding='same')(d4) return tf.keras.Model([img_A, img_B], validity)
你在定义 Model 类时,没有传入参数 cell,但是在代码中使用了 ConvRNN2D 的实例化对象,这个对象需要一个 cell 参数。你需要在初始化函数中添加这个参数,如下所示:
```
class Model():
def __init__(self, cell):
self.img_seq_shape=(10,128,128,3)
self.img_shape=(128,128,3)
self.train_img=dataset
patch = int(128 / 2 ** 4)
self.disc_patch = (patch, patch, 1)
self.optimizer=tf.keras.optimizers.Adam(learning_rate=0.001)
self.build_generator=self.build_generator()
self.build_discriminator=self.build_discriminator(cell)
self.build_discriminator.compile(loss='binary_crossentropy', optimizer=self.optimizer, metrics=['accuracy'])
self.build_generator.compile(loss='binary_crossentropy', optimizer=self.optimizer)
img_seq_A = Input(shape=(10,128,128,3))
img_B = Input(shape=self.img_shape)
fake_B = self.build_generator(img_seq_A)
self.build_discriminator.trainable = False
valid = self.build_discriminator([img_seq_A, fake_B])
self.combined = tf.keras.models.Model([img_seq_A, img_B], [valid, fake_B])
self.combined.compile(loss=['binary_crossentropy', 'mse'], loss_weights=[1, 100], optimizer=self.optimizer,metrics=['accuracy'])
def build_generator(self):
def res_net(inputs, filters):
x = inputs
net = conv2d(x, filters // 2, (1, 1), 1)
net = conv2d(net, filters, (3, 3), 1)
net = net + x
return net
def conv2d(inputs, filters, kernel_size, strides):
x = tf.keras.layers.Conv2D(filters, kernel_size, strides, 'same')(inputs)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.LeakyReLU(alpha=0.2)(x)
return x
d0 = tf.keras.layers.Input(shape=(10, 128, 128, 3))
out= ConvRNN2D(cell, filters=32, kernel_size=3,padding='same')(d0)
out=tf.keras.layers.Conv2D(3,1,1,'same')(out)
return keras.Model(inputs=d0, outputs=out)
def build_discriminator(self, cell):
def d_layer(layer_input, filters, f_size=4, bn=True):
d = tf.keras.layers.Conv2D(filters, kernel_size=f_size, strides=2, padding='same')(layer_input)
if bn:
d = tf.keras.layers.BatchNormalization(momentum=0.8)(d)
d = tf.keras.layers.LeakyReLU(alpha=0.2)(d)
return d
img_A = tf.keras.layers.Input(shape=(10, 128, 128, 3))
img_B = tf.keras.layers.Input(shape=(128, 128, 3))
df = 32
lstm_out = ConvRNN2D(cell, filters=df, kernel_size=4, padding="same")(img_A)
lstm_out = tf.keras.layers.LeakyReLU(alpha=0.2)(lstm_out)
combined_imgs = tf.keras.layers.Concatenate(axis=-1)([lstm_out, img_B])
d1 = d_layer(combined_imgs, df)#64
d2 = d_layer(d1, df * 2)#32
d3 = d_layer(d2, df * 4)#16
d4 = d_layer(d3, df * 8)#8
validity = tf.keras.layers.Conv2D(1, kernel_size=4, strides=1, padding='same')(d4)
return tf.keras.Model([img_A, img_B], validity)
```
用keras编写CGAN扩增DEAP脑电数据集的代码
以下是基于Keras编写的CGAN扩增DEAP脑电数据集的代码:
```python
import numpy as np
from keras.layers import Input, Dense, Reshape, Flatten, Dropout, concatenate, Conv1D, Conv2DTranspose
from keras.layers import BatchNormalization, Activation, Embedding, ZeroPadding2D
from keras.layers.advanced_activations import LeakyReLU
from keras.models import Sequential, Model
from keras.optimizers import Adam
from keras.utils import np_utils
from keras.datasets import mnist
from keras import backend as K
# Load DEAP dataset
def load_data():
# Load data from file
data = np.load('data.npy')
labels = np.load('labels.npy')
# Normalize data
data = (data - np.min(data)) / (np.max(data) - np.min(data))
# Reshape data to (samples, channels, samples_per_channel)
data = np.reshape(data, (data.shape[0], data.shape[1], -1))
# Convert labels to one-hot encoding
labels = np_utils.to_categorical(labels)
return data, labels
# Define generator
def build_generator():
# Neural network architecture
model = Sequential()
model.add(Dense(256, input_dim=100))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(512))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(1024))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(28*28*1, activation='tanh'))
model.add(Reshape((28, 28, 1)))
# Output
noise = Input(shape=(100,))
label = Input(shape=(10,))
label_embedding = Flatten()(Embedding(10, 100)(label))
model_input = multiply([noise, label_embedding])
img = model(model_input)
return Model([noise, label], img)
# Define discriminator
def build_discriminator():
# Neural network architecture
model = Sequential()
model.add(Conv1D(32, kernel_size=3, strides=2, input_shape=(40, 8064)))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(Conv1D(64, kernel_size=3, strides=2))
model.add(ZeroPadding2D(padding=((0,1),(0,1))))
model.add(BatchNormalization(momentum=0.8))
model.add(Conv1D(128, kernel_size=3, strides=2))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Conv1D(256, kernel_size=3, strides=1))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Conv1D(512, kernel_size=3, strides=1))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Flatten())
model.add(Dense(1, activation='sigmoid'))
# Output
img = Input(shape=(40, 8064))
label = Input(shape=(10,))
label_embedding = Flatten()(Embedding(10, 40*8064)(label))
label_embedding = Reshape((40, 8064, 1))(label_embedding)
concat = concatenate([img, label_embedding], axis=3)
validity = model(concat)
return Model([img, label], validity)
# Define CGAN model
def build_cgan(generator, discriminator):
# Discriminator is not trainable during generator training
discriminator.trainable = False
# Model architecture
model = Sequential()
model.add(generator)
model.add(discriminator)
# Compile model
optimizer = Adam(0.0002, 0.5)
model.compile(loss='binary_crossentropy', optimizer=optimizer)
return model
# Train CGAN model
def train_cgan(generator, discriminator, cgan, data, labels, epochs, batch_size):
# Adversarial ground truth
valid = np.ones((batch_size, 1))
fake = np.zeros((batch_size, 1))
for epoch in range(epochs):
# ---------------------
# Train Discriminator
# ---------------------
# Select a random batch of data and labels
idx = np.random.randint(0, data.shape[0], batch_size)
real_data = data[idx]
real_labels = labels[idx]
# Sample noise and generate a batch of new data
noise = np.random.normal(0, 1, (batch_size, 100))
fake_labels = np_utils.to_categorical(np.random.randint(0, 10, batch_size), 10)
gen_data = generator.predict([noise, fake_labels])
# Train the discriminator on real and fake data
d_loss_real = discriminator.train_on_batch([real_data, real_labels], valid)
d_loss_fake = discriminator.train_on_batch([gen_data, fake_labels], fake)
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
# ---------------------
# Train Generator
# ---------------------
# Sample noise and generate a batch of new data
noise = np.random.normal(0, 1, (batch_size, 100))
fake_labels = np_utils.to_categorical(np.random.randint(0, 10, batch_size), 10)
# Train the generator to fool the discriminator
g_loss = cgan.train_on_batch([noise, fake_labels], valid)
# Print progress
print ("%d [D loss: %f] [G loss: %f]" % (epoch, d_loss, g_loss))
# Load data
data, labels = load_data()
# Build generator and discriminator
generator = build_generator()
discriminator = build_discriminator()
# Build CGAN model
cgan = build_cgan(generator, discriminator)
# Train CGAN model
train_cgan(generator, discriminator, cgan, data, labels, epochs=2000, batch_size=32)
```
注意:以上代码仅供参考,可能需要根据具体情况进行调整和修改。
阅读全文