e. non-decreasing dilemma
时间: 2023-04-25 16:04:55 浏览: 174
e. 非递减困境
非递减困境是指在一个决策过程中,每个决策都会影响到后续的决策,而且每个决策都必须保证不会使得整个过程的结果变得更差。这种情况下,决策者需要在保证整个过程不会变得更差的前提下,尽可能地追求更好的结果。这种困境通常出现在生产、销售、投资等领域中。
相关问题
You have a lock with an integer array a of length n written on it. The numbers in the array can be repeated. The lock opens only when the array is sorted in non-decreasing order. To change the state of the array there is only operation available which uses a permutation p of numbers from 1 to n. When this operation is applied the elements of the array change positions according to this permutation, meaning the number ai moves from position i to position Pi for each i.In the beginning the array on the lock was sorted in non-decreasing order but then this operation was applied to it once. Your goal is to unlock the lock again but there's a trick: you can independently restore any position of the array to the value that was on this position before. In general, you can do the following: 1. First, you record the current state of the array. 2. Then you apply the operation to the array moving its elements according to the permutation p. 3. If for every i there exists a previously recorded state in which a equals to the initial value of ai, you stop, otherwise you repeat the first two steps. How many iterations of this algorithm will be performed until you'll be able to restore the initial values? Notice that you strictly follow the algorithm, for example if the array is already sorted in non-decreasing order you stil perform one iteration before you stop.给出中文解释和c++代码
问题要求计算执行算法的迭代次数,直到能够恢复初始值。我们可以使用深度优先搜索(DFS)来解决这个问题。
中文解释:
1. 首先,我们创建一个数组`visited`,用于记录已经访问过的状态。
2. 然后,我们定义一个辅助函数`dfs`来执行深度优先搜索。这个函数有四个参数:当前状态`state`,初始状态`initial_state`,数组`a`和数组长度`n`。
3. 在`dfs`函数中,我们首先将当前状态添加到已访问集合中,并递归地遍历每个位置i。
4. 对于每个位置i,我们检查是否存在之前记录的状态,使得a等于初始状态的ai。如果存在,则继续递归地执行`dfs`函数。
5. 如果遍历完所有位置i后仍然没有找到满足条件的状态,则返回false。
6. 在主函数中,我们首先记录初始状态,然后调用`dfs`函数进行深度优先搜索,并返回迭代次数。
下面是对应的C++代码实现:
```cpp
#include <iostream>
#include <vector>
int iterations = 0;
bool dfs(std::vector<int>& state, std::vector<int>& initial_state, std::vector<int>& a, int n) {
if (state == initial_state) {
return true;
}
if (iterations > n) {
return false;
}
iterations++;
for (int i = 0; i < n; i++) {
if (state[i] != a[i] && state[a[i] - 1] == a[i]) {
std::swap(state[i], state[a[i] - 1]);
if (dfs(state, initial_state, a, n)) {
return true;
}
std::swap(state[i], state[a[i] - 1]);
}
}
return false;
}
int main() {
int n;
std::cin >> n;
std::vector<int> a(n);
for (int i = 0; i < n; i++) {
std::cin >> a[i];
}
std::vector<int> state(a);
std::vector<int> initial_state(a);
iterations = 0;
dfs(state, initial_state, a, n);
std::cout << iterations << std::endl;
return 0;
}
```
请注意,这只是一个基本的实现示例,并未进行错误处理和输入验证。在实际应用中,您可能需要根据实际情况进行更多的输入检查和错误处理。
写一个程序,并在代码中加入中文注释 - The input txt file has 3 lines. The first line has only one integer, the capacity of the bag. The second line has a bunch of positive integers for the value of each item. Two integers are separated by a comma “,”. The third line is in the same format as the second for the weight of each item. - When the calculation is finished, print the optimal value and optimal solution(s) one for each line on the screen. (The optimal value is unique, but the optimal solution may not.) - Sort the items in the optimal solution(s) in the decreasing order of item indices. - The index of items starts from 1. In your program, you need to implement three source files “main.cpp”, “lib.h” and “lib.cpp” For “main.cpp” - It only contains the “main” function. - It reads inputs from .txt files. The input txt file is passed to the main function as an argument. - Each txt file contains exactly one instance. For “lib.h” and “lib.cpp” - .h is the header file for .cpp. - They contain all other functions except “main”.
以下是对应的代码和注释:
// lib.h
#ifndef LIB_H
#define LIB_H
#include <vector>
#include <string>
// 定义物品结构体
struct Item {
int value; // 物品价值
int weight; // 物品重量
int index; // 物品编号
};
// 读取文件并返回相应的参数
void readInput(std::string fileName, int& capacity, std::vector<Item>& items);
// 计算背包问题的最优解
int knapsack(int capacity, std::vector<Item>& items, std::vector<std::vector<int>>& dp);
// 回溯寻找最优解
void backtrack(std::vector<Item>& items, std::vector<std::vector<int>>& dp, std::vector<int>& solution, int i, int j);
// 打印最优解
void printSolution(int optimalValue, std::vector<int>& solution);
#endif
// lib.cpp
#include <iostream>
#include <fstream>
#include <algorithm>
#include "lib.h"
using namespace std;
void readInput(string fileName, int& capacity, vector<Item>& items) {
ifstream inputFile(fileName);
if (inputFile.is_open()) {
// 读取背包容量
inputFile >> capacity;
int value, weight, index = 1;
char comma;
// 读取物品价值和重量
while (inputFile >> value >> comma >> weight) {
items.push_back({value, weight, index});
index++;
}
inputFile.close();
}
}
int knapsack(int capacity, vector<Item>& items, vector<vector<int>>& dp) {
int n = items.size();
// 初始化dp数组,dp[i][j]表示前i个物品放入容量为j的背包中的最大价值
for (int i = 0; i <= n; i++) {
dp[i][0] = 0;
}
for (int j = 0; j <= capacity; j++) {
dp[0][j] = 0;
}
// 动态规划计算最优解
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= capacity; j++) {
if (items[i-1].weight > j) {
dp[i][j] = dp[i-1][j];
}
else {
dp[i][j] = max(dp[i-1][j], dp[i-1][j-items[i-1].weight] + items[i-1].value);
}
}
}
// 返回最优解
return dp[n][capacity];
}
void backtrack(vector<Item>& items, vector<vector<int>>& dp, vector<int>& solution, int i, int j) {
if (i == 0 || j == 0) {
return;
}
if (dp[i][j] == dp[i-1][j]) {
// 第i个物品没有选
backtrack(items, dp, solution, i-1, j);
}
else if (dp[i][j] == dp[i-1][j-items[i-1].weight] + items[i-1].value) {
// 第i个物品选了
solution.push_back(items[i-1].index);
backtrack(items, dp, solution, i-1, j-items[i-1].weight);
}
}
void printSolution(int optimalValue, vector<int>& solution) {
// 打印最优值
cout << "Optimal value: " << optimalValue << endl;
// 打印最优解
cout << "Optimal solution(s):" << endl;
sort(solution.begin(), solution.end(), greater<int>());
for (int i = 0; i < solution.size(); i++) {
cout << solution[i] << " ";
}
cout << endl;
}
// main.cpp
#include <iostream>
#include <vector>
#include "lib.h"
using namespace std;
int main(int argc, char* argv[]) {
if (argc < 2) {
cerr << "Usage: " << argv[0] << " input.txt" << endl;
return 1;
}
string fileName = argv[1];
int capacity;
vector<Item> items;
readInput(fileName, capacity, items);
vector<vector<int>> dp(items.size()+1, vector<int>(capacity+1, 0));
int optimalValue = knapsack(capacity, items, dp);
vector<int> solution;
backtrack(items, dp, solution, items.size(), capacity);
printSolution(optimalValue, solution);
return 0;
}
阅读全文