D:\anaconda\lib\site-packages\pandas\plotting\_core.py:402: UserWarning: FixedFormatter should only be used together with FixedLocator
时间: 2023-10-02 22:10:56 浏览: 162
引用是一段使用seaborn库绘制数据集iris的散点图的代码。其中,sns.set_style("whitegrid")是设置图表样式为白色网格,sns.pairplot(iris,hue="Species",size=3)是绘制iris数据集的散点图,hue参数指定了按照"Species"列进行颜色标记。plt.show()用于显示图表。
引用是一段使用sklearn库进行K均值聚类的代码。首先,通过循环尝试不同的聚类数目,使用KMeans算法进行聚类,并计算每个聚类数目对应的WCSS值(WCSS代表聚类内部的方差之和)。接着,使用plt.plot(range(1, 11), wcss)绘制WCSS随聚类数目的变化曲线,plt.title、plt.xlabel和plt.ylabel分别设置标题和坐标轴的标签,最后使用plt.show()显示图表。
引用是一段使用sklearn库进行数据标准化的代码。首先,创建一个StandardScaler对象standardscaler,并调用其fit_transform方法对数据集df进行标准化处理。标准化后的数据存储在data_tf中,然后将其转换为DataFrame,并保持原数据集的列标签。
回答完毕。以下是您的相关问题:
相关问题:
1. 如何使用seaborn库绘制散点图?
2. 什么是K均值聚类算法?怎么使用sklearn库进行K均值聚类?
3. 什么是数据标准化?如何使用sklearn库进行数据标准化?
相关问题
Traceback (most recent call last): File "D:\PythonProject\数据分析\plot.py", line 39, in <module> dfgroup2.plot(kind="bar") File "D:\anaconda3\lib\site-packages\pandas\plotting\_core.py", line 1000, in __call__ return plot_backend.plot(data, kind=kind, **kwargs) File "D:\anaconda3\lib\site-packages\pandas\plotting\_matplotlib\__init__.py", line 71, in plot plot_obj.generate() File "D:\anaconda3\lib\site-packages\pandas\plotting\_matplotlib\core.py", line 451, in generate self._setup_subplots() File "D:\anaconda3\lib\site-packages\pandas\plotting\_matplotlib\core.py", line 512, in _setup_subplots fig = self.plt.figure(figsize=self.figsize) File "D:\anaconda3\lib\site-packages\matplotlib\_api\deprecation.py", line 454, in wrapper return func(*args, **kwargs) File "D:\anaconda3\lib\site-packages\matplotlib\pyplot.py", line 813, in figure manager = new_figure_manager( File "D:\anaconda3\lib\site-packages\matplotlib\pyplot.py", line 382, in new_figure_manager _warn_if_gui_out_of_main_thread() File "D:\anaconda3\lib\site-packages\matplotlib\pyplot.py", line 360, in _warn_if_gui_out_of_main_thread if _get_required_interactive_framework(_get_backend_mod()): File "D:\anaconda3\lib\site-packages\matplotlib\pyplot.py", line 208, in _get_backend_mod switch_backend(rcParams._get("backend")) File "D:\anaconda3\lib\site-packages\matplotlib\pyplot.py", line 331, in switch_backend manager_pyplot_show = vars(manager_class).get("pyplot_show") TypeError: vars() argument must have __dict__ attribute
这个错误通常是因为你的matplotlib库的backend没有正确设置,或者你的代码在非交互式环境中运行。你可以尝试在代码的开头添加下面这行代码来设置matplotlib的backend:
```python
import matplotlib
matplotlib.use('TkAgg')
```
这里的'TkAgg'是一种常用的backend,你也可以根据自己的需要选择其他的backend。如果你已经设置了backend,但仍然出现这个错误,那么可能是你的代码在非交互式环境中运行。你可以尝试在交互式环境中运行代码,或者使用plt.savefig()函数将图像保存到文件中,而不是在窗口中显示。
Traceback (most recent call last): File "D:/LPRNet_Pytorch-master/LPRNet_Pytorch-master/train_LPRNet.py", line 268, in <module> train() File "D:/LPRNet_Pytorch-master/LPRNet_Pytorch-master/train_LPRNet.py", line 107, in train lprnet.load_state_dict(torch.load(args.pretrained_model)) File "D:\Anaconda\lib\site-packages\torch\serialization.py", line 608, in load return _legacy_load(opened_file, map_location, pickle_module, **pickle_load_args) File "D:\Anaconda\lib\site-packages\torch\serialization.py", line 787, in _legacy_load result = unpickler.load() File "D:\Anaconda\lib\site-packages\torch\serialization.py", line 743, in persistent_load deserialized_objects[root_key] = restore_location(obj, location) File "D:\Anaconda\lib\site-packages\torch\serialization.py", line 175, in default_restore_location result = fn(storage, location) File "D:\Anaconda\lib\site-packages\torch\serialization.py", line 151, in _cuda_deserialize device = validate_cuda_device(location) File "D:\Anaconda\lib\site-packages\torch\serialization.py", line 135, in validate_cuda_device raise RuntimeError('Attempting to deserialize object on a CUDA ' RuntimeError: Attempting to deserialize object on a CUDA device but torch.cuda.is_available() is False. If you are running on a CPU-only machine, please use torch.load with map_location=torch.device('cpu') to map your storages to the CPU.
这个错误是因为你在尝试从一个CUDA设备上加载模型,但是当前的机器上没有GPU。你需要使用`torch.load`函数时传入`map_location=torch.device('cpu')`的参数来将模型加载到CPU上。 例如:
```python
lprnet.load_state_dict(torch.load(args.pretrained_model, map_location=torch.device('cpu')))
```
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)