孪生网络pytorch代码示例
时间: 2024-03-29 17:33:00 浏览: 69
孪生网络是一种用于处理成对数据的神经网络结构,常用于分类任务。下面是一个使用PyTorch实现的孪生网络的代码示例[^2]:
```python
import torch
import torch.nn as nn
class SiameseNetwork(nn.Module):
def __init__(self):
super(SiameseNetwork, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(1, 64, kernel_size=10),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2),
nn.Conv2(64, 128, kernel_size=7),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2),
nn.Conv2(128, 128, kernel_size=4),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2),
nn.Conv2d(128, 256, kernel_size=4),
nn.ReLU(inplace=True),
)
self.fc = nn.Sequential(
nn.Linear(256 * 6 * 6, 4096),
nn.Sigmoid()
)
def forward_once(self, x):
output = self.conv(x)
output = output.view(output.size()[0], -1)
output = self.fc(output)
return output
def forward(self, input1, input2):
output1 = self.forward_once(input1)
output2 = self.forward_once(input2)
return output1, output2
# 创建模型实例
model = SiameseNetwork()
```
这段代码定义了一个名为`SiameseNetwork`的孪生网络模型,它包含了卷积层和全连接层。在`forward`方法中,输入数据会分别通过两个相同的网络结构,然后将两个输出进行比较或合并,用于分类任务。
阅读全文