简述装载问题的分支界限算法步骤,分析该算法的时间复杂度
时间: 2023-06-18 16:08:45 浏览: 122
10.算法分析1_复杂度分析+查找+排序1
装载问题(Knapsack Problem)是指有一个容量为C的背包和n个物品,第i个物品的重量为wi,价值为vi,现在要从这n个物品中选取若干个放入背包中,使得所选物品的重量不超过C,且所选物品的价值之和最大。这是一个经典的NP完全问题,可以使用分支界限算法求解。
分支界限算法的步骤如下:
1. 将背包问题转化为线性规划问题,即将背包容量和物品重量、价值分别表示为x0、x1、x2、...、xn的线性组合形式,目标函数为价值最大化。
2. 初始化最大价值为0,将根节点入队。
3. 从队列头部取出一个节点,计算该节点的上界价值。如果该节点的上界价值小于等于当前最大价值,则剪枝,否则继续执行。
4. 如果该节点代表的状态是一个可行解,则更新最大价值,并记录该可行解的物品选择情况。
5. 否则,对该节点进行分支,生成两个子节点,分别表示选择当前物品和不选择当前物品两种情况,并计算其上界价值。将两个子节点加入队列中。
6. 重复步骤3~5,直到队列为空。
分支界限算法的时间复杂度取决于队列的长度,即搜索树的大小。由于每个节点最多只有两个子节点,因此搜索树的大小为O(2^n),时间复杂度为指数级别,无法解决大规模问题。因此,分支界限算法一般用于小规模问题的求解,或者用于求解特殊结构的问题,如0/1背包问题。
阅读全文