选择两个 UCI 数集,分别用线性核和高斯核训练一个 SVM并与BP 神经网络和 C4.5 决策树进行实验比较的代码
时间: 2023-06-20 10:04:35 浏览: 202
这是一个比较复杂的问题,需要涉及到数据预处理、模型训练和评估等多个环节。以下是一个简单的示例代码,用于演示如何在Python中使用Scikit-learn库训练SVM、BP神经网络和C4.5决策树,并对模型进行评估。
首先,我们需要导入必要的库和数据集。这里我们选择了UCI的Iris和Wine数据集。
```python
import numpy as np
import pandas as pd
from sklearn.datasets import load_iris, load_wine
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.neural_network import MLPClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
```
```python
iris = load_iris()
X_iris = iris.data
y_iris = iris.target
wine = load_wine()
X_wine = wine.data
y_wine = wine.target
```
接下来,我们将数据集分为训练集和测试集,并进行标准化处理。
```python
X_iris_train, X_iris_test, y_iris_train, y_iris_test = train_test_split(X_iris, y_iris, test_size=0.2, random_state=0)
X_wine_train, X_wine_test, y_wine_train, y_wine_test = train_test_split(X_wine, y_wine, test_size=0.2, random_state=0)
scaler = StandardScaler()
X_iris_train = scaler.fit_transform(X_iris_train)
X_iris_test = scaler.transform(X_iris_test)
X_wine_train = scaler.fit_transform(X_wine_train)
X_wine_test = scaler.transform(X_wine_test)
```
接下来,我们将使用线性核和高斯核训练一个SVM。
```python
svm_linear = SVC(kernel='linear')
svm_linear.fit(X_iris_train, y_iris_train)
svm_linear_iris_acc = accuracy_score(y_iris_test, svm_linear.predict(X_iris_test))
svm_rbf = SVC(kernel='rbf')
svm_rbf.fit(X_iris_train, y_iris_train)
svm_rbf_iris_acc = accuracy_score(y_iris_test, svm_rbf.predict(X_iris_test))
```
然后,我们将使用BP神经网络训练模型。
```python
mlp = MLPClassifier(hidden_layer_sizes=(10,), max_iter=1000)
mlp.fit(X_iris_train, y_iris_train)
mlp_iris_acc = accuracy_score(y_iris_test, mlp.predict(X_iris_test))
```
最后,我们将使用C4.5决策树训练模型。
```python
dt = DecisionTreeClassifier()
dt.fit(X_iris_train, y_iris_train)
dt_iris_acc = accuracy_score(y_iris_test, dt.predict(X_iris_test))
```
我们可以使用相同的方法对Wine数据集进行训练和评估。最终,我们可以将所有模型的表现进行比较。
```python
print('Iris dataset')
print('SVM with linear kernel: {:.3f}'.format(svm_linear_iris_acc))
print('SVM with RBF kernel: {:.3f}'.format(svm_rbf_iris_acc))
print('BP Neural Network: {:.3f}'.format(mlp_iris_acc))
print('C4.5 Decision Tree: {:.3f}'.format(dt_iris_acc))
print('Wine dataset')
print('SVM with linear kernel: {:.3f}'.format(svm_linear_wine_acc))
print('SVM with RBF kernel: {:.3f}'.format(svm_rbf_wine_acc))
print('BP Neural Network: {:.3f}'.format(mlp_wine_acc))
print('C4.5 Decision Tree: {:.3f}'.format(dt_wine_acc))
```
这个代码只是一个示例,实际应用中需要根据具体情况进行修改和优化。