用python写一段代码:采用ResNet网络模型对CIFA-100数据集分类,进行模型训练和模型评估
时间: 2024-05-14 17:12:25 浏览: 162
以下是用Python编写的使用ResNet网络模型对CIFAR-100数据集进行分类的示例代码。我们将使用PyTorch深度学习框架。
首先,我们将导入必要的库和模块:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
```
接下来,我们将定义我们的ResNet网络模型。我们将使用预训练的ResNet18模型,并将其修改为适合CIFAR-100数据集的大小和类别数:
```python
class ResNet18(nn.Module):
def __init__(self):
super(ResNet18, self).__init__()
self.resnet = torchvision.models.resnet18(pretrained=True)
self.resnet.fc = nn.Linear(512, 100)
def forward(self, x):
x = self.resnet(x)
return x
```
然后,我们将进行数据预处理。我们将对图像进行随机裁剪、水平翻转、归一化和转换为张量:
```python
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
trainset = torchvision.datasets.CIFAR100(root='./data', train=True,
download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR100(root='./data', train=False,
download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=128,
shuffle=False, num_workers=2)
```
接下来,我们将定义我们的训练函数。我们将使用交叉熵损失函数和随机梯度下降优化器。我们还将在每个epoch中输出训练和测试的准确率:
```python
def train(net, epochs):
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
for epoch in range(epochs):
net.train()
train_loss = 0
correct = 0
total = 0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += labels.size(0)
correct += predicted.eq(labels).sum().item()
print('Epoch %d train loss: %.3f accuracy: %.3f' %
(epoch + 1, train_loss / len(trainloader), 100.0 * correct / total))
net.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
inputs, labels = data
outputs = net(inputs)
loss = criterion(outputs, labels)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += labels.size(0)
correct += predicted.eq(labels).sum().item()
print('Epoch %d test loss: %.3f accuracy: %.3f' %
(epoch + 1, test_loss / len(testloader), 100.0 * correct / total))
```
最后,我们将实例化我们的ResNet18模型,并开始训练和评估:
```python
net = ResNet18()
train(net, 20)
```
这将对模型进行20个epoch的训练,并输出训练和测试准确率。
阅读全文