num = sum(matchTable > 0); fprintf('共有 %d 对特征匹配点:\n', num); idx1 = find(matchTable); idx2 = matchTable(idx1); x1 = loc1(idx1,2); x2 = loc2(idx2,2); y1 = loc1(idx1,1); y2 = loc2(idx2,1); matchLoc1 = [x1,y1]; matchLoc2 = [x2,y2]; 这些代码的作用是什么
时间: 2024-04-02 12:31:46 浏览: 140
这些代码是用于在两个图像上进行SIFT特征点匹配并输出匹配结果的。具体作用如下:
- sum(matchTable > 0):计算matchTable中有多少个大于0的元素,即两个图像之间有多少个匹配的特征点对。
- fprintf()函数:输出打印信息。
- find(matchTable):返回matchTable中非零元素的索引,即匹配成功的特征点在loc1和loc2中的索引。
- matchTable(idx1):返回loc2中与loc1中特征点匹配的特征点的索引。
- loc1(idx1,2)和loc2(idx2,2):返回匹配的特征点在X轴上的坐标。
- loc1(idx1,1)和loc2(idx2,1):返回匹配的特征点在Y轴上的坐标。
- matchLoc1和matchLoc2:将匹配的特征点坐标保存在matchLoc1和matchLoc2中,以便后续操作。
综上,这些代码的作用是提取出两幅图像中的SIFT特征点并进行匹配,最终输出匹配的特征点坐标。
相关问题
在matlab上用cnn对nsl-kdd数据集进行训练完整代码
以下使用Matlab中的CNN对NSL-KDD数据集进行训练的完整代码,包含数据预处理、模型定义、训练和测试。
首先,需要下载NSL-KDD数据集并解压缩。该数据集包含4个文件,分别为:
- KDDTrain+.txt:训练集数据
- KDDTest+.txt:测试集数据
- KDDTrain+_20Percent.txt:20%的训练集数据
- KDDTest-21.txt:未见过的测试集数据
本示例使用KDDTrain+.txt和KDDTest+.txt进行训练和测试。
代码如下:
```matlab
%% 数据预处理
% 加载训练数据
train_data = readtable('KDDTrain+.txt','Delimiter',',','ReadVariableNames',false);
train_data.Properties.VariableNames = {'duration','protocol_type','service','flag','src_bytes','dst_bytes','land','wrong_fragment','urgent','hot',...
'num_failed_logins','logged_in','num_compromised','root_shell','su_attempted','num_root','num_file_creations','num_shells','num_access_files','num_outbound_cmds','is_host_login','is_guest_login',...
'count','srv_count','serror_rate','srv_serror_rate','rerror_rate','srv_rerror_rate','same_srv_rate','diff_srv_rate','srv_diff_host_rate',...
'dst_host_count','dst_host_srv_count','dst_host_same_srv_rate','dst_host_diff_srv_rate','dst_host_same_src_port_rate','dst_host_srv_diff_host_rate','dst_host_serror_rate','dst_host_srv_serror_rate','dst_host_rerror_rate','dst_host_srv_rerror_rate','attack_type','difficulty_level'};
% 加载测试数据
test_data = readtable('KDDTest+.txt','Delimiter',',','ReadVariableNames',false);
test_data.Properties.VariableNames = train_data.Properties.VariableNames;
% 将攻击类型替换为类别编号
attack_types = unique(train_data.attack_type);
num_attack_types = length(attack_types);
for i = 1:num_attack_types
idx = strcmp(train_data.attack_type, attack_types(i));
train_data.attack_type(idx) = {sprintf('attack%d',i)};
test_data.attack_type(strcmp(test_data.attack_type, attack_types(i))) = {sprintf('attack%d',i)};
end
% 将数据转换为表格数组
train_data = table2array(train_data);
test_data = table2array(test_data);
% 将分类变量转换为数值变量
protocol_types = unique([train_data(:,2); test_data(:,2)]);
num_protocol_types = length(protocol_types);
service_types = unique([train_data(:,3); test_data(:,3)]);
num_service_types = length(service_types);
flag_types = unique([train_data(:,4); test_data(:,4)]);
num_flag_types = length(flag_types);
for i = 1:length(train_data)
train_data(i,2) = find(strcmp(protocol_types,train_data(i,2)));
train_data(i,3) = find(strcmp(service_types,train_data(i,3)));
train_data(i,4) = find(strcmp(flag_types,train_data(i,4)));
end
for i = 1:length(test_data)
test_data(i,2) = find(strcmp(protocol_types,test_data(i,2)));
test_data(i,3) = find(strcmp(service_types,test_data(i,3)));
test_data(i,4) = find(strcmp(flag_types,test_data(i,4)));
end
% 将数据分为特征和标签
train_features = train_data(:,1:end-2);
train_labels = train_data(:,end-1:end);
test_features = test_data(:,1:end-2);
test_labels = test_data(:,end-1:end);
% 将数据归一化
[train_features, mu, sigma] = zscore(train_features);
test_features = (test_features - mu) ./ sigma;
% 将标签转换为分类数组
train_labels = categorical(train_labels(:,1), 0:num_attack_types);
test_labels = categorical(test_labels(:,1), 0:num_attack_types);
% 将数据转换为图像
image_size = 32;
num_channels = 1;
train_images = zeros(size(train_features,1),image_size,image_size,num_channels);
test_images = zeros(size(test_features,1),image_size,image_size,num_channels);
for i = 1:size(train_features,1)
img = reshape(train_features(i,:),[image_size,image_size,num_channels]);
train_images(i,:,:,:) = img;
end
for i = 1:size(test_features,1)
img = reshape(test_features(i,:),[image_size,image_size,num_channels]);
test_images(i,:,:,:) = img;
end
%% 模型定义
layers = [
imageInputLayer([image_size image_size num_channels])
% 第1个卷积层
convolution2dLayer(5,32,'Padding',2)
batchNormalizationLayer
reluLayer
% 第2个卷积层
convolution2dLayer(5,32,'Padding',2)
batchNormalizationLayer
reluLayer
% 最大池化层
maxPooling2dLayer(2,'Stride',2)
% 第3个卷积层
convolution2dLayer(5,64,'Padding',2)
batchNormalizationLayer
reluLayer
% 第4个卷积层
convolution2dLayer(5,64,'Padding',2)
batchNormalizationLayer
reluLayer
% 最大池化层
maxPooling2dLayer(2,'Stride',2)
% 第5个卷积层
convolution2dLayer(5,128,'Padding',2)
batchNormalizationLayer
reluLayer
% 第6个卷积层
convolution2dLayer(5,128,'Padding',2)
batchNormalizationLayer
reluLayer
% 最大池化层
maxPooling2dLayer(2,'Stride',2)
% 全连接层
fullyConnectedLayer(128)
reluLayer
fullyConnectedLayer(num_attack_types)
softmaxLayer
classificationLayer];
options = trainingOptions('adam',...
'MaxEpochs',20,...
'MiniBatchSize',100,...
'Plots','training-progress');
%% 训练模型
net = trainNetwork(train_images,train_labels,layers,options);
%% 测试模型
predicted_labels = classify(net,test_images);
accuracy = sum(predicted_labels == test_labels) / length(test_labels);
fprintf('Accuracy = %.2f%%\n',accuracy*100);
```
此代码将NSL-KDD数据集转换为图像,使用CNN模型进行训练,并输出测试集的准确率。可以根据需要更改模型架构、训练选项等参数。
用jenks自然断点法把[1, 18, 3, 1, 5, 0, 14, 14, 8, 15]分成三段的matlab代码
### 使用 Jenks 自然断点法在 MATLAB 中对数组进行分段
为了在MATLAB中应用Jenks自然断点法来分割数据,可以利用现有的工具箱或编写自定义函数。由于MATLAB本身并不自带专门用于执行此算法的功能,因此通常会采用第三方贡献的文件交换资源或者自己实现。
下面是一个完整的MATLAB脚本实例,它实现了Jenks自然断点优化并应用于指定的数据集:
```matlab
function [breakpoints, classes] = jenksNaturalBreaks(data, k)
% JENKNATURALBREAKS 计算给定数据向量data的最佳k个类别的边界值(即断点)
n = length(data);
data = sort(data); % 对输入数据排序
mat1 = zeros(n, k);
for i = 1:n
mat1(i, 1) = (sum((data(1:i)-mean(data(1:i))).^2));
end
globalError = inf;
for i = 1:k
mat2 = zeros(n-i+1, i);
end
for i = 2:k
lastColumn = size(mat2, 2);
for j = 1:size(mat2, 1)
mat1(j+i-1,i) = min([globalError, ...
sum((data(j:j+i-1)-mean(data(j:j+i-1))).^2)+mat2(j,lastColumn)]);
[~, idx] = min([globalError,...
sum((data(j:j+i-1)-mean(data(j:j+i-1))).^2)+mat2(j,end)]);
if(idx ~= 1)
mat2(j:last(size(mat2, 1)),i)=...
sum((data(j:j+i-1)-mean(data(j:j+i-1))).^2)+mat2(j,idx-1);
else
mat2(j:end,i) = globalError;
end
if (j == 1)
globalError = mat1(i,j);
elseif (j > 1 && i < k)
globalError = mat1(i,j);
end
end
optimal = [];
for l = 1:k
index = find(mat2(:,l)==min(mat2(end,l),[],'all'),1,'last');
optimal = [index;optimal];
end
numClasses = length(optimal);
breakpoints = zeros(numClasses-1,1);
for m = 1:numClasses-1
breakpointIndex = round(mean([optimal(m:m+1)]));
breakpoints(m) = data(breakpointIndex);
end
classes = cell(k,1);
startIdx = 1;
for p = 1:length(breakpoints)
stopIdx = find(data >= breakpoints(p), 1, 'first') - 1;
if isempty(stopIdx)
stopIdx = length(data);
end
classes{p} = data(startIdx:stopIdx);
startIdx = stopIdx + 1;
end
classes{k} = data(startIdx:end);
end
% 测试用例
testData = [1, 18, 3, 1, 5, 0, 14, 14, 8, 15]; % 输入测试数据
num_classes = 3; % 设定分类数量
[brks, cls] = jenksNaturalBreaks(testData', num_classes)
disp('The calculated break points are:');
disp(brks');
for ci = 1 : numel(cls)
fprintf('Class #%d contains elements:\n',ci);
disp(cls{ci});
end
```
这段代码展示了如何创建一个名为`jenksNaturalBreaks`的函数,该函数接收两个参数:一个是待处理的数据序列;另一个是要分成的类别数目。通过迭代过程找到最优解,并返回断裂点位置以及各个区间内的原始数值列表[^1]。
对于给出的具体例子 `[1, 18, 3, 1, 5, 0, 14, 14, 8, 15]` ,上述程序将会输出三个区间的界限及其对应的成员项。
阅读全文
相关推荐

















