leaflet用flask得到{"y":115.9059900,"x":29.1660300,"label":0},格式的json文件,将其轨迹聚类图画出来

时间: 2023-11-05 22:00:38 浏览: 43
以下是一个简单的代码示例,使用Flask和Leaflet来绘制聚类图: ```python from flask import Flask, jsonify from flask_cors import CORS from random import uniform from sklearn.cluster import KMeans app = Flask(__name__) CORS(app) # 轨迹数据 data = [ {"y": 115.9059900, "x": 29.1660300, "label": 0}, {"y": 115.9060000, "x": 29.1660400, "label": 0}, {"y": 115.9060100, "x": 29.1660500, "label": 0}, {"y": 115.9070000, "x": 29.1670400, "label": 0}, {"y": 115.9070100, "x": 29.1670500, "label": 0}, {"y": 115.9070200, "x": 29.1670600, "label": 0}, {"y": 115.9080000, "x": 29.1680400, "label": 1}, {"y": 115.9080100, "x": 29.1680500, "label": 1}, {"y": 115.9080200, "x": 29.1680600, "label": 1}, {"y": 115.9090000, "x": 29.1690400, "label": 1}, {"y": 115.9090100, "x": 29.1690500, "label": 1}, {"y": 115.9090200, "x": 29.1690600, "label": 1}, {"y": 115.9100000, "x": 29.1700400, "label": 2}, {"y": 115.9100100, "x": 29.1700500, "label": 2}, {"y": 115.9100200, "x": 29.1700600, "label": 2}, {"y": 115.9110000, "x": 29.1710400, "label": 2}, {"y": 115.9110100, "x": 29.1710500, "label": 2}, {"y": 115.9110200, "x": 29.1710600, "label": 2}, ] # 聚类 kmeans = KMeans(n_clusters=3, random_state=0).fit([[d["x"], d["y"]] for d in data]) for i, d in enumerate(data): d["label"] = kmeans.labels_[i] # 转换为GeoJSON格式 features = [] for d in data: feature = { "type": "Feature", "geometry": { "type": "Point", "coordinates": [d["y"], d["x"]] }, "properties": {"label": str(d["label"])} } features.append(feature) geojson = { "type": "FeatureCollection", "features": features } # 路由 @app.route("/") def index(): return app.send_static_file("index.html") @app.route("/data") def get_data(): return jsonify(geojson) if __name__ == "__main__": app.run(debug=True) ``` 上述代码中,我们使用了Flask的CORS扩展来允许跨域请求。我们首先定义了一些轨迹数据,然后使用scikit-learn库的KMeans算法进行聚类。聚类后,我们将数据转换为GeoJSON格式,然后将其作为路由的响应返回。 在static文件夹中,我们创建了一个名为index.html的文件,其中包含了一个Leaflet地图,它将从我们的Flask应用程序中获取数据并在地图上绘制聚类点。以下是index.html的示例代码: ```html <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title>Leaflet Cluster Map</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/leaflet/1.7.1/leaflet.css" /> <style> #mapid { height: 100vh; } </style> </head> <body> <div id="mapid"></div> <script src="https://cdnjs.cloudflare.com/ajax/libs/leaflet/1.7.1/leaflet.js"></script> <script> var mymap = L.map('mapid').setView([29.1660300, 115.9059900], 13); L.tileLayer('https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', { attribution: '&copy; <a href="https://www.openstreetmap.org/">OpenStreetMap</a> contributors' }).addTo(mymap); var markers = L.markerClusterGroup(); fetch("/data") .then(response => response.json()) .then(data => { L.geoJSON(data, { pointToLayer: function (feature, latlng) { return L.marker(latlng, { icon: L.divIcon({ html: feature.properties.label, className: 'label-icon', iconSize: [24, 24] }) }); } }).addTo(markers); mymap.addLayer(markers); }) .catch(error => console.error(error)); </script> </body> </html> ``` 在上述代码中,我们创建了一个名为`mymap`的Leaflet地图,并向其添加了一个OpenStreetMap图层。我们还创建了L.markerClusterGroup()对象,用于将聚类点分组。我们使用fetch()函数从我们的Flask应用程序中获取数据,并使用L.geoJSON()函数将其绘制在地图上。对于每个点,我们使用L.marker()函数创建一个标记,并使用L.divIcon()函数创建一个包含标签的图标。最后,我们将标记添加到聚类组中,并将其添加到地图中。 运行该应用程序并访问http://localhost:5000,您应该会看到一个包含聚类点的地图。聚类点上的标签表示它们属于哪个聚类。

相关推荐

最新推荐

recommend-type

nodejs-x64-0.10.21.tgz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

node-v4.1.1-linux-armv6l.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

node-v4.1.0-linux-arm64.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

matlab S-Function 混合系统仿真

matlab绘制函数图像 MATLAB (Matrix Laboratory) 是一种用于数值计算的高级编程语言和交互式环境,由 MathWorks 公司开发。它广泛用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境。以下是一些 MATLAB 的基本特性和使用方式: 1. 基本语法 变量:MATLAB 中的变量不需要预先声明,直接赋值即可。 数组:MATLAB 使用方括号 [] 创建数组,数组索引从 1 开始。 运算符:包括加、减、乘、除、乘方等。 函数:MATLAB 有大量内置函数,也可以编写自定义函数。 2. 绘图 MATLAB 提供了丰富的绘图功能,如绘制线图、散点图、柱状图、饼图等。 matlab x = 0:0.01:2*pi; y = sin(x); plot(x, y); title('Sine Function'); xlabel('x'); ylabel('y'); 3. 数据分析 MATLAB 可以处理各种类型的数据,包括矩阵、向量、数组等,并提供了许多数据分析函数,如统计函数、信号处理函数等。 4. 脚本和函数
recommend-type

智慧交通规划方案.pptx

智慧交通规划方案.pptx
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用matlab绘制高斯色噪声情况下的频率估计CRLB,其中w(n)是零均值高斯色噪声,w(n)=0.8*w(n-1)+e(n),e(n)服从零均值方差为se的高斯分布

以下是用matlab绘制高斯色噪声情况下频率估计CRLB的代码: ```matlab % 参数设置 N = 100; % 信号长度 se = 0.5; % 噪声方差 w = zeros(N,1); % 高斯色噪声 w(1) = randn(1)*sqrt(se); for n = 2:N w(n) = 0.8*w(n-1) + randn(1)*sqrt(se); end % 计算频率估计CRLB fs = 1; % 采样频率 df = 0.01; % 频率分辨率 f = 0:df:fs/2; % 频率范围 M = length(f); CRLB = zeros(M,1); for
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。