可以参考spsspro的lgbm回归输出的结果,给出参考代码吗
时间: 2024-03-04 10:48:53 浏览: 131
当然可以,下面是一份基于LightGBM的回归模型代码,供您参考:
```python
import lightgbm as lgb
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
# 读取数据
data = pd.read_csv('data.csv')
# 划分训练集和测试集
train_data, test_data, train_label, test_label = train_test_split(data.drop('label', axis=1),
data['label'],
test_size=0.2,
random_state=42)
# 定义模型参数
params = {
'boosting_type': 'gbdt',
'objective': 'regression',
'metric': 'mse',
'num_leaves': 31,
'learning_rate': 0.05,
'feature_fraction': 0.9,
'bagging_fraction': 0.8,
'bagging_freq': 5,
'verbose': -1
}
# 将数据转化为LightGBM的数据格式
train_set = lgb.Dataset(train_data, label=train_label)
test_set = lgb.Dataset(test_data, label=test_label)
# 训练模型
model = lgb.train(params, train_set, num_boost_round=1000, valid_sets=[train_set, test_set],
early_stopping_rounds=50, verbose_eval=100)
# 在测试集上进行预测
pred_label = model.predict(test_data, num_iteration=model.best_iteration)
# 评估模型
mse = mean_squared_error(test_label, pred_label)
print('Mean Squared Error:', mse)
```
需要注意的是,这只是一份示例代码,具体实现可能会根据数据集和应用场景的不同而有所调整。
阅读全文