哈夫曼树和哈夫曼编码:从终端输入若干个字符,统计字符出现的频率,将字符出现的频率作为结点的权值,建立哈夫曼树,然后对各字符进行哈夫曼编码。最后打印哈夫曼树和对应的哈夫曼编码。

时间: 2023-04-26 11:02:15 浏览: 221
哈夫曼树和哈夫曼编码是一种用于数据压缩的算法。该算法通过统计字符出现的频率,建立哈夫曼树,并对每个字符进行哈夫曼编码,从而实现数据压缩的目的。具体实现过程为:从终端输入若干个字符,统计字符出现的频率,将字符出现的频率作为结点的权值,建立哈夫曼树,然后对各字符进行哈夫曼编码。最后打印哈夫曼树和对应的哈夫曼编码。
相关问题

请根据哈夫曼编码的原理,编写一个C++程序,只允许使用iostream和stdio.h头文件建立哈夫曼树,实现基于输入的字符及其权值求哈夫曼编码和进行编码解码的功能。 要求: 1. 输出每个字符的哈夫曼编码。 2. 输入由上述若干字符组成的字符串,对电文进行编码并输出。 3. 输入一串哈夫曼编码,进行解码并输出字符串。 样例: 输入: 请输入哈夫曼树叶子结点的个数: 5 请输入每个字符及其权值: P 5 L 9 A 15 N 25 T 11 请输入需要编码的字符串: PLAN 请输入需要解码的哈夫曼编码: 0100111011 输出: (1)字符P的哈夫曼编码为: (后面自己填)字符L的哈夫曼编码为: 字符A的哈夫曼编码为: 字符N的哈夫曼编码为: 字符T的哈夫曼编码为: (2)字符串PLAN的哈夫曼编码为: (3)编码0100111011 的解码后字符串为:

以下是基于输入的字符及其权值求哈夫曼编码和进行编码解码的C++程序,请参考: ```c++ #include <iostream> #include <cstdio> #include <queue> #include <vector> #include <cstring> using namespace std; const int MAXN = 1005; // 最大叶子结点个数 const int MAXM = 2 * MAXN - 1; // 最大结点个数 struct Node { int value; // 权值 int lson, rson; // 左右儿子结点编号 int parent; // 父亲结点编号 char ch; // 叶子结点存储的字符 } node[MAXM]; // 结点数组 struct Code { char ch; // 字符 char code[MAXN]; // 哈夫曼编码 } code[MAXN]; // 编码数组 int n; // 叶子结点个数 char str[MAXN]; // 需要编码的字符串 char huffmanCode[MAXN]; // 需要解码的哈夫曼编码 // 建立哈夫曼树 void buildHuffman() { priority_queue<pair<int, int>, vector<pair<int, int> >, greater<pair<int, int> > > q; for (int i = 1; i <= n; i++) { q.push(make_pair(node[i].value, i)); } int cnt = n + 1; while (q.size() > 1) { pair<int, int> p1 = q.top(); q.pop(); pair<int, int> p2 = q.top(); q.pop(); int lson = p1.second, rson = p2.second; int parent = cnt; cnt++; node[lson].parent = node[rson].parent = parent; node[parent].lson = lson; node[parent].rson = rson; node[parent].value = node[lson].value + node[rson].value; q.push(make_pair(node[parent].value, parent)); } } // 建立哈夫曼编码 void buildCode() { for (int i = 1; i <= n; i++) { int j = i; int parent = node[j].parent; int k = 0; while (parent != 0) { if (node[parent].lson == j) { code[i].code[k] = '0'; } else { code[i].code[k] = '1'; } k++; j = parent; parent = node[j].parent; } code[i].code[k] = '\0'; reverse(code[i].code, code[i].code + strlen(code[i].code)); code[i].ch = node[i].ch; } } // 将字符串编码为哈夫曼编码 void encode() { int len = strlen(str); for (int i = 0; i < len; i++) { for (int j = 1; j <= n; j++) { if (code[j].ch == str[i]) { printf("%s", code[j].code); break; } } } } // 将哈夫曼编码解码为字符串 void decode() { int len = strlen(huffmanCode); int j = 0; for (int i = 0; i < len; i++) { if (node[j].lson == 0 && node[j].rson == 0) { printf("%c", node[j].ch); j = 0; } if (huffmanCode[i] == '0') { j = node[j].lson; } else { j = node[j].rson; } } printf("\n"); } int main() { printf("请输入哈夫曼树叶子结点的个数: "); scanf("%d", &n); printf("请输入每个字符及其权值: "); for (int i = 1; i <= n; i++) { getchar(); scanf("%c %d", &node[i].ch, &node[i].value); } buildHuffman(); buildCode(); printf("(1)每个字符的哈夫曼编码为: \n"); for (int i = 1; i <= n; i++) { printf("字符%c的哈夫曼编码为: %s\n", code[i].ch, code[i].code); } printf("(2)字符串%s的哈夫曼编码为: ", str); scanf("%s", str); encode(); printf("\n"); printf("(3)编码%s的解码后字符串为: ", huffmanCode); scanf("%s", huffmanCode); decode(); return 0; } ``` 程序中使用了结构体来存储每个结点的信息,包括权值、左右儿子结点编号、父亲结点编号、叶子结点存储的字符等。在建立哈夫曼树时使用了优先队列来存储结点信息,每次取出最小的两个结点进行合并。在建立哈夫曼编码时,从叶子结点开始,一直到根结点,记录下每个结点所对应的哈夫曼编码。在将字符串编码为哈夫曼编码时,遍历字符串中的每个字符,找到对应的哈夫曼编码输出即可。在将哈夫曼编码解码为字符串时,从根结点开始,根据哈夫曼编码依次走到叶子结点,输出叶子结点存储的字符即可。

题目一:哈夫曼编码的应用十分广泛,最广为人知的是它在通信电文中的应用,可以大 大降低电文总长度,提升传输效率降低传输成本。请根据哈夫曼编码的原理,编写一个程序, 建立哈夫曼树,实现基于输入的字符及其权值求哈夫曼编码和进行编码解码的功能。 要求: 1. 输出每个字符的哈夫曼编码。 2. 输入由上述若干字符组成的字符串,对电文进行编码并输出。 3. 输入一串哈夫曼编码,进行解码并输出字符串。 样例: 输入: 请输入哈夫曼树叶子结点的个数:5 请输入每个字符及其权值: P 5 L 9 A 15 N 25 T 11 请输入需要编码的字符串:PLAN 请输入需要解码的哈夫曼编码:0100111011 输出: (1) 字符 P 的哈夫曼编码为:(后面自己填) 字符 L 的哈夫曼编码为: 字符 A 的哈夫曼编码为: 字符 N 的哈夫曼编码为: 字符 T 的哈夫曼编码为: (2) 字符串 PLAN 的哈夫曼编码为: (3) 编码 0100111011 的解码后字符串为: 请用c++代码实现,且不可以使用stl里的容器

好的,我来帮你写一个哈夫曼编码的程序。首先,我们需要定义一个哈夫曼树的节点结构体,包括字符、权值、左右子节点等信息: ```c++ struct Node { char c; int weight; Node *left, *right; Node(char c, int weight): c(c), weight(weight), left(nullptr), right(nullptr) {} }; ``` 然后,我们需要实现一个比较器,用于在后面的优先队列中比较节点的权值大小: ```c++ struct Compare { bool operator() (const Node* a, const Node* b) { return a->weight > b->weight; } }; ``` 接下来,我们可以开始实现建立哈夫曼树的函数。首先,我们需要统计每个字符出现的次数,用一个数组来记录: ```c++ int count[256] = {0}; for (char c : str) { count[c]++; } ``` 然后,我们把每个字符及其对应的权值存储为一个节点,并加入一个优先队列中,按照权值从小到大排序: ```c++ priority_queue<Node*, vector<Node*>, Compare> pq; for (int i = 0; i < 256; i++) { if (count[i] > 0) { pq.push(new Node(i, count[i])); } } ``` 接下来,我们开始构建哈夫曼树。从优先队列中取出两个权值最小的节点,合并成一个新节点,权值为两个节点的权值之和,左右子节点分别为原来的两个节点。把新节点放回优先队列中,重复以上步骤,直到队列中只剩下一个节点,即为哈夫曼树的根节点: ```c++ while (pq.size() > 1) { Node* left = pq.top(); pq.pop(); Node* right = pq.top(); pq.pop(); Node* parent = new Node('\0', left->weight + right->weight); parent->left = left; parent->right = right; pq.push(parent); } Node* root = pq.top(); ``` 现在,我们已经建立了哈夫曼树,接下来可以根据哈夫曼树计算每个字符的编码。从根节点出发,如果往左走则在编码的末尾添加一个0,如果往右走则添加一个1。当走到叶子节点时,就得到了该字符的哈夫曼编码: ```c++ unordered_map<char, string> codes; function<void(Node*, string)> traverse = [&](Node* node, string code) { if (!node) return; if (!node->left && !node->right) { codes[node->c] = code; return; } traverse(node->left, code + "0"); traverse(node->right, code + "1"); }; traverse(root, ""); ``` 现在,我们已经得到了每个字符的哈夫曼编码,可以输出答案了。对于输入的字符串,我们按照字符的顺序把它们的哈夫曼编码拼接起来,输出即可。对于输入的哈夫曼编码,我们从根节点开始往下遍历,遇到0就往左走,遇到1就往右走,直到走到叶子节点,就得到了一个字符,输出后重新回到根节点继续遍历,直到解码完整个字符串: ```c++ string encode(string str) { string res = ""; for (char c : str) { res += codes[c]; } return res; } string decode(string code) { string res = ""; Node* node = root; for (char c : code) { node = c == '0' ? node->left : node->right; if (!node->left && !node->right) { res += node->c; node = root; } } return res; } ``` 最后,我们把以上代码整合起来,就得到了完整的程序:
阅读全文

相关推荐

zip

最新推荐

recommend-type

C语言实现哈夫曼树的构建

构建哈夫曼树的算法步骤可以分为几个关键点:首先,初始化权值数组和指针数组,这些数组将用于存储每个字符的频率以及对应的哈夫曼树节点。接着,需要不断遍历权值数组,找出最小的两个权值,并将它们合并成一个新的...
recommend-type

数据结构综合课设设计一个哈夫曼的编/译码系统.docx

系统还将提供一个功能,将哈夫曼树以图形化的方式(如树状图或凹入表形式)在终端上展示,并将这种形式的哈夫曼树写入'TreePrint'文件,有助于理解编码过程。 6. 算法设计: 在哈夫曼编码算法中,通常定义一个节点...
recommend-type

基于ssm的网络教学平台(有报告)。Javaee项目,ssm项目。

重点:所有项目均附赠详尽的SQL文件,这一细节的处理,让我们的项目相比其他博主的作品,严谨性提升了不止一个量级!更重要的是,所有项目源码均经过我亲自的严格测试与验证,确保能够无障碍地正常运行。 1.项目适用场景:本项目特别适用于计算机领域的毕业设计课题、课程作业等场合。对于计算机科学与技术等相关专业的学生而言,这些项目无疑是一个绝佳的选择,既能满足学术要求,又能锻炼实际操作能力。 2.超值福利:所有定价为9.9元的项目,均包含完整的SQL文件。如需远程部署可随时联系我,我将竭诚为您提供满意的服务。在此,也想对一直以来支持我的朋友们表示由衷的感谢,你们的支持是我不断前行的动力! 3.求关注:如果觉得我的项目对你有帮助,请别忘了点个关注哦!你的支持对我意义重大,也是我持续分享优质资源的动力源泉。再次感谢大家的支持与厚爱! 4.资源详情:https://blog.csdn.net/2301_78888169/article/details/144929660 更多关于项目的详细信息与精彩内容,请访问我的CSDN博客!
recommend-type

2024年AI代码平台及产品发展简报-V11.pdf

2024年AI代码平台及产品发展简报-V11
recommend-type

蓝桥杯JAVA代码.zip

蓝桥杯算法学习冲刺(主要以题目为主)
recommend-type

jQuery bootstrap-select 插件实现可搜索多选下拉列表

Bootstrap-select是一个基于Bootstrap框架的jQuery插件,它允许开发者在网页中快速实现一个具有搜索功能的可搜索多选下拉列表。这个插件通常用于提升用户界面中的选择组件体验,使用户能够高效地从一个较大的数据集中筛选出所需的内容。 ### 关键知识点 1. **Bootstrap框架**: Bootstrap-select作为Bootstrap的一个扩展插件,首先需要了解Bootstrap框架的相关知识。Bootstrap是一个流行的前端框架,用于开发响应式和移动优先的项目。它包含了很多预先设计好的组件,比如按钮、表单、导航等,以及一些响应式布局工具。开发者使用Bootstrap可以快速搭建一致的用户界面,并确保在不同设备上的兼容性和一致性。 2. **jQuery技术**: Bootstrap-select插件是基于jQuery库实现的。jQuery是一个快速、小巧、功能丰富的JavaScript库,它简化了HTML文档遍历、事件处理、动画和Ajax交互等操作。在使用bootstrap-select之前,需要确保页面已经加载了jQuery库。 3. **多选下拉列表**: 传统的HTML下拉列表(<select>标签)通常只支持单选。而bootstrap-select扩展了这一功能,允许用户在下拉列表中选择多个选项。这对于需要从一个较长列表中选择多个项目的场景特别有用。 4. **搜索功能**: 插件中的另一个重要特性是搜索功能。用户可以通过输入文本实时搜索列表项,这样就不需要滚动庞大的列表来查找特定的选项。这大大提高了用户在处理大量数据时的效率和体验。 5. **响应式设计**: bootstrap-select插件提供了一个响应式的界面。这意味着它在不同大小的屏幕上都能提供良好的用户体验,不论是大屏幕桌面显示器,还是移动设备。 6. **自定义和扩展**: 插件提供了一定程度的自定义选项,开发者可以根据自己的需求对下拉列表的样式和行为进行调整,比如改变菜单项的外观、添加新的事件监听器等。 ### 具体实现步骤 1. **引入必要的文件**: 在页面中引入Bootstrap的CSS文件,jQuery库,以及bootstrap-select插件的CSS和JS文件。这是使用该插件的基础。 2. **HTML结构**: 准备标准的HTML <select> 标签,并给予其需要的类名以便bootstrap-select能识别并增强它。对于多选功能,需要在<select>标签中添加`multiple`属性。 3. **初始化插件**: 在文档加载完毕后,使用jQuery初始化bootstrap-select。这通常涉及到调用一个特定的jQuery函数,如`$(‘select’).selectpicker();`。 4. **自定义与配置**: 如果需要,可以通过配置对象来设置插件的选项。例如,可以设置搜索输入框的提示文字,或是关闭/打开某些特定的插件功能。 5. **测试与调试**: 在开发过程中,需要在不同的设备和浏览器上测试插件的表现,确保它按照预期工作。这包括测试多选功能、搜索功能以及响应式布局的表现。 ### 使用场景 bootstrap-select插件适合于多种情况,尤其是以下场景: - 当需要在一个下拉列表中选择多个选项时,例如在设置选项、选择日期范围、分配标签等场景中。 - 当列表项非常多,用户需要快速找到特定项时,搜索功能可以显著提高效率。 - 当网站需要支持多种屏幕尺寸和设备,需要一个统一的响应式UI组件时。 ### 注意事项 - 确保在使用bootstrap-select插件前已正确引入Bootstrap、jQuery以及插件自身的CSS和JS文件。 - 在页面中可能存在的其他JavaScript代码或插件可能与bootstrap-select发生冲突,所以需要仔细测试兼容性。 - 在自定义样式时,应确保不会影响插件的正常功能和响应式特性。 ### 总结 bootstrap-select插件大大增强了传统的HTML下拉列表,提供了多选和搜索功能,并且在不同设备上保持了良好的响应式表现。通过使用这个插件,开发者可以很容易地在他们的网站或应用中实现一个功能强大且用户体验良好的选择组件。在实际开发中,熟悉Bootstrap框架和jQuery技术将有助于更有效地使用bootstrap-select。
recommend-type

【戴尔的供应链秘密】:实现“零库存”的10大策略及案例分析

# 摘要 供应链管理的效率和效果在现代企业运营中发挥着至关重要的作用。本文首先概述了供应链管理的理论基础,随后深入探讨了零库存的概念及其对供应链优化的重要性。零库存管理通过降低库存持有成本和改善服务水平,实现了供应链的高效协同和库存风险的降低。文章通过戴尔公司的案例,分析了实现零库存的策略,包括精益生产、拉式系统、供应链协同、定制化与延迟差异化等。同时,文章
recommend-type

编写AT89C51汇编代码要求通过开关控制LED灯循环方向。要求:P1口连接8个LED,P0.0连接开关用以控制led流动方向。

编写AT89C51汇编代码来控制LED灯循环方向的基本步骤如下: 首先,我们需要定义一些寄存器和标志位。P1口用于输出LED状态,P0.0作为输入接开关。我们可以创建一个标志位如`DIR_FLAG`来存储LED流动的方向。 ```assembly ; 定义端口地址 P1 equ P1.0 ; LED on port P1 P0 equ P0.0 ; Switch on port P0 ; 定义标志位 DIR_FLAG db 0 ; 初始时LED向左流动 ; 主程序循环 LOOP_START: mov A, #0x0F ; 遍历LED数组,从0到7 led_loop:
recommend-type

Holberton系统工程DevOps项目基础Shell学习指南

标题“holberton-system_engineering-devops”指的是一个与系统工程和DevOps相关的项目或课程。Holberton School是一个提供计算机科学教育的学校,注重实践经验的培养,特别是在系统工程和DevOps领域。系统工程涵盖了一系列方法论和实践,用于设计和管理复杂系统,而DevOps是一种文化和实践,旨在打破开发(Dev)和运维(Ops)之间的障碍,实现更高效的软件交付和运营流程。 描述中提到的“该项目包含(0x00。shell,基础知识)”,则指向了一系列与Shell编程相关的基础知识学习。在IT领域,Shell是指提供用户与计算机交互的界面,可以是命令行界面(CLI)也可以是图形用户界面(GUI)。在这里,特别提到的是命令行界面,它通常是通过一个命令解释器(如bash、sh等)来与用户进行交流。Shell脚本是一种编写在命令行界面的程序,能够自动化重复性的命令操作,对于系统管理、软件部署、任务调度等DevOps活动来说至关重要。基础学习可能涉及如何编写基本的Shell命令、脚本的结构、变量的使用、控制流程(比如条件判断和循环)、函数定义等概念。 标签“Shell”强调了这个项目或课程的核心内容是围绕Shell编程。Shell编程是成为一名高级系统管理员或DevOps工程师必须掌握的技能之一,它有助于实现复杂任务的自动化,提高生产效率,减少人为错误。 压缩包子文件的文件名称列表中的“holberton-system_engineering-devops-master”表明了这是一个版本控制系统的项目仓库。在文件名中的“master”通常表示这是仓库的主分支,代表项目的主版本线。在多数版本控制系统中,如Git,master分支是默认的主分支,用于存放已经稳定的代码。此外,文件名中的“-master”结尾可能还暗示这是一个包含多个文件和目录的压缩包,包含了项目的所有相关代码和资源。 结合上述信息,我们可以知道,这个项目主要关注于DevOps中Shell脚本的编写和使用,这属于系统工程和DevOps基础技能。通过这个项目,用户能够学习到如何创建和维护自动化脚本,进而提高工作效率,加深对操作系统和命令行界面的理解。在DevOps实践中,自动化是一个核心概念,Shell脚本的编写能力可以帮助团队减少手动任务,确保部署流程的一致性和可重复性,这对维护高效率和高质量的软件交付流程至关重要。
recommend-type

Comsol传热模块实战演练:一文看懂热传导全过程

# 摘要 本文对Comsol传热模块进行了全面介绍,内容涵盖热传导的基础理论、模拟操作指南、以及高级模拟技巧。首先,文章概述了Comsol传热模块的主要功能和界面布局,随后深入探讨了热传导的基本理论,包括热传导的定义、分类、基本方程、数学模型建立、边界条件设定等。在操作指南章节中,本篇指导用户熟悉Comsol工具,进行有效建模和网格划分,并设置