import pandas as pd import numpy as np df=pd.read_csv("data.csv",encoding='utf-8') #文件路径为绝对路径,根据自己电脑文件夹的路径修改 df df.info() #查看df信息 df.dropna(inplace=True) #删除空值行 df.drop('Unnamed: 0',axis=1,inplace=True) #删除无用列 df df=df.drop_duplicates() ###消除重复记录 df 文件的路径是放在哪
时间: 2024-04-06 21:30:48 浏览: 158
文件的路径可以放在任何位置,只要你在代码中将路径正确指定即可。你可以将文件放在与代码相同的目录下,或者在代码中指定文件的绝对路径或相对路径。如果文件与代码不在同一目录下,你需要在路径中指定文件所在的文件夹。例如,如果文件在子文件夹data中,你可以使用相对路径"data/data.csv"来指定文件路径。如果文件路径为绝对路径,你需要在路径前面加上盘符(例如"C:/data/data.csv")。
相关问题
import numpy as np import pandas as pd df = pd.read_csv("taobao_data_matplolib.csv",encoding='gbk') data = np.array(df.成交量) labels = np.array(df.位置)画出柱状图
可以使用Matplotlib库中的`bar`函数来画出柱状图,具体实现如下:
```python
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv("taobao_data_matplolib.csv", encoding='gbk')
data = np.array(df.成交量)
labels = np.array(df.位置)
plt.bar(labels, data)
plt.show()
```
这样就可以画出成交量和位置之间的柱状图了。注意,如果位置的种类很多,柱状图可能会比较密集,可以考虑调整图形大小或者旋转x轴标签来更好地展示数据。
import pandas as pd data = pd.read_excel('C:\Users\home\Desktop\新建文件夹(1)\支撑材料\数据\111.xlsx','Sheet5',index_col=0) data.to_csv('data.csv',encoding='utf-8') import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt df = pd.read_csv(r"data.csv", encoding='utf-8', index_col=0).reset_index(drop=True) df from sklearn import preprocessing df = preprocessing.scale(df) df covX = np.around(np.corrcoef(df.T),decimals=3) covX featValue, featVec= np.linalg.eig(covX.T) featValue, featVec def meanX(dataX): return np.mean(dataX,axis=0) average = meanX(df) average m, n = np.shape(df) m,n data_adjust = [] avgs = np.tile(average, (m, 1)) avgs data_adjust = df - avgs data_adjust covX = np.cov(data_adjust.T) covX featValue, featVec= np.linalg.eig(covX) featValue, featVec tot = sum(featValue) var_exp = [(i / tot) for i in sorted(featValue, reverse=True)] cum_var_exp = np.cumsum(var_exp) plt.bar(range(1, 14), var_exp, alpha=0.5, align='center', label='individual explained variance') plt.step(range(1, 14), cum_var_exp, where='mid', label='cumulative explained variance') plt.ylabel('Explained variance ratio') plt.xlabel('Principal components') plt.legend(loc='best') plt.show() eigen_pairs = [(np.abs(featValue[i]), featVec[:, i]) for i in range(len(featValue))] eigen_pairs.sort(reverse=True) w = np.hstack((eigen_pairs[0][1][:, np.newaxis], eigen_pairs[1][1][:, np.newaxis])) X_train_pca = data_adjust.dot(w) colors = ['r', 'b', 'g'] markers = ['s', 'x', 'o'] for l, c, m in zip(np.unique(data_adjust), colors, markers): plt.scatter(data_adjust,data_adjust, c=c, label=l, marker=m) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.show()
这段代码是在进行主成分分析(PCA)的数据预处理和可视化操作。首先读取一个 Excel 文件并将其转换为 CSV 格式,然后使用 sklearn 库中的 preprocessing 模块对数据进行标准化处理,接着计算数据集的协方差矩阵并求解其特征值和特征向量,用于评估数据集的主要特征。随后,进行主成分分析,将数据集映射到低维空间,以便进行可视化展示。最后,使用 matplotlib 库进行可视化处理,展示数据在主成分空间中的分布情况。整个代码块的目的是为了帮助数据科学家更好地理解数据集的特征和分布情况,从而更好地进行建模和分析。
阅读全文