最速下降法线性方程组matlab误差图
时间: 2023-09-30 15:11:42 浏览: 87
下面是使用最速下降法求解线性方程组的Matlab代码,并绘制误差图的示例:
```
% 定义线性方程组
A = [4 -1 0; -1 4 -1; 0 -1 4];
b = [15; 10; 10];
% 定义迭代初始值和精度要求
x0 = [0; 0; 0];
epsilon = 1e-6;
% 最速下降法求解
x = x0;
r = b - A*x;
err = norm(r);
err_list = [err];
while err > epsilon
alpha = (r'*r) / (r'*A*r);
x = x + alpha*r;
r = b - A*x;
err = norm(r);
err_list = [err_list err];
end
% 绘制误差图
semilogy(1:length(err_list), err_list);
xlabel('迭代次数');
ylabel('误差');
title('最速下降法求解线性方程组误差图');
```
其中,`err_list`记录了每次迭代的误差大小,使用`semilogy`函数绘制误差图。
相关问题
求解线性方程组Ax=b的最速下降法matlab代码与主程序。要求用function函数,并且函数输入包括A,b,初始解x0,最大迭代次数N,收敛误差e;函数输出包括最终解x,最终迭代次数Nt,最终收敛误差et;A和b通过load A.mat与load b.mat确定
以下是最速下降法的matlab代码和主程序:
```matlab
function [x, Nt, et] = steepestDescent(A, b, x0, N, e)
% 最速下降法求解线性方程组Ax=b
% A: 系数矩阵, b: 常数向量, x0: 初始解向量, N: 最大迭代次数, e: 收敛误差
% x: 最终解向量, Nt: 最终迭代次数, et: 最终收敛误差
r = b - A*x0; % 计算初始残量
x = x0; % 初始化解向量
Nt = 0; % 初始化迭代次数
et = norm(r); % 初始化收敛误差
while Nt < N && et > e % 迭代条件
alpha = (r'*r)/(r'*A*r); % 计算步长
x = x + alpha*r; % 更新解向量
r = b - A*x; % 更新残量
et = norm(r); % 计算收敛误差
Nt = Nt + 1; % 更新迭代次数
end
end
```
主程序:
```matlab
% 加载系数矩阵和常数向量
load A.mat
load b.mat
% 设置初始解向量,最大迭代次数和收敛误差
x0 = zeros(size(A,2),1);
N = 100;
e = 1e-6;
% 调用最速下降法函数求解线性方程组
[x, Nt, et] = steepestDescent(A, b, x0, N, e);
% 输出结果
fprintf('最终解向量:\n');
disp(x);
fprintf('最终迭代次数:%d\n', Nt);
fprintf('最终收敛误差:%e\n', et);
```
阅读全文
相关推荐

















