cnn-lstm 代码matlab
时间: 2023-08-30 10:05:09 浏览: 139
LSTM和RNN算法matlab源代码.zip
以下是一个简单的CNN-LSTM网络的MATLAB代码示例:
```matlab
%加载数据
load('imdb.mat')
%定义CNN层
layers = [
sequenceInputLayer(inputSize) %输入层
convolution2dLayer([3 3],64,'Padding','same') %卷积层1
batchNormalizationLayer %BatchNorm层1
reluLayer %激活函数层1
maxPooling2dLayer([2 2],'Stride',2) %池化层1
convolution2dLayer([3 3],128,'Padding','same') %卷积层2
batchNormalizationLayer %BatchNorm层2
reluLayer %激活函数层2
maxPooling2dLayer([2 2],'Stride',2) %池化层2
];
%定义LSTM层
numHiddenUnits = 128; %LSTM单元数
lstmLayer = lstmLayer(numHiddenUnits,'OutputMode','last');
%连接CNN和LSTM层
layers = [
layers %CNN层
sequenceFoldingLayer('Name','fold') %序列折叠层
lstmLayer %LSTM层
sequenceUnfoldingLayer('Name','unfold') %序列展开层
fullyConnectedLayer(2) %全连接层
softmaxLayer %Softmax层
classificationLayer %分类层
];
%定义训练选项
options = trainingOptions('adam', ...
'MaxEpochs',5, ...
'MiniBatchSize',64, ...
'SequenceLength','longest', ...
'Shuffle','every-epoch', ...
'Verbose',false, ...
'Plots','training-progress');
%训练网络
net = trainNetwork(trainData,layers,options);
```
其中,`inputSize`是输入图像的大小,`numHiddenUnits`是LSTM单元数,`trainData`是训练数据。这个示例只是一个简单的CNN-LSTM网络,你可以根据你的具体应用需求对网络进行调整。
阅读全文