CNN-LSTM的matlab代码
时间: 2023-07-22 18:13:51 浏览: 189
CNN-LSTM Matlab源码,包括原数据
5星 · 资源好评率100%
以下是一个使用Matlab实现CNN-LSTM的示例代码:
```
% Load the data
load('trainData.mat');
load('testData.mat');
% Set the sequence length
sequenceLength = 50;
% Define the CNN layers
inputLayer = imageInputLayer([28 28 1]);
convLayer1 = convolution2dLayer(5,20);
reluLayer1 = reluLayer();
poolLayer1 = maxPooling2dLayer(2,'Stride',2);
convLayer2 = convolution2dLayer(5,50);
reluLayer2 = reluLayer();
poolLayer2 = maxPooling2dLayer(2,'Stride',2);
cnnLayers = [
inputLayer
convLayer1
reluLayer1
poolLayer1
convLayer2
reluLayer2
poolLayer2
];
% Define the LSTM layers
numHiddenUnits = 100;
numClasses = 10;
lstmLayers = [
sequenceInputLayer([28 28 1])
sequenceFoldingLayer('Method','last')
lstmLayer(numHiddenUnits,'OutputMode','last')
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer
];
% Combine the CNN and LSTM layers
layers = [
cnnLayers
sequenceInputLayer([28 28 1 sequenceLength])
lstmLayers
];
% Set the training options
options = trainingOptions('sgdm', ...
'MaxEpochs',10, ...
'MiniBatchSize',128, ...
'Shuffle','every-epoch', ...
'Plots','training-progress');
% Train the network
net = trainNetwork(trainData,trainLabels,layers,options);
% Test the network
predictedLabels = classify(net,testData);
accuracy = sum(predictedLabels == testLabels)/numel(testLabels);
```
在这个示例中,我们首先加载了训练和测试数据,然后定义了CNN和LSTM层。接下来,我们将这些层组合在一起,并使用训练数据对模型进行训练。最后,我们使用测试数据对模型进行测试,并计算模型的准确率。
请注意,这只是一个简单的CNN-LSTM模型示例。你可以根据你的需求和数据集来定义更复杂的CNN-LSTM架构和训练选项。
阅读全文