cnn 全连接层 python
时间: 2023-08-24 09:04:56 浏览: 82
python_cnn:用python实现cnn
以下是使用 Python 实现 CNN 和全连接层的示例代码:
```python
import numpy as np
# 定义全连接层类
class FullyConnectedLayer:
def __init__(self, input_size, output_size):
self.weights = np.random.rand(input_size, output_size)
self.bias = np.zeros(output_size)
def forward(self, x):
return np.dot(x, self.weights) + self.bias
# 定义卷积层类
class ConvolutionalLayer:
def __init__(self, input_size, num_filters, filter_size, stride):
self.input_size = input_size
self.num_filters = num_filters
self.filter_size = filter_size
self.stride = stride
self.filters = np.random.rand(num_filters, input_size, filter_size, filter_size)
def forward(self, x):
batch_size, channels, height, width = x.shape
output_height = int((height - self.filter_size) / self.stride) + 1
output_width = int((width - self.filter_size) / self.stride) + 1
# 初始化输出
output = np.zeros((batch_size, self.num_filters, output_height, output_width))
# 对每个样本进行卷积操作
for i in range(batch_size):
for j in range(self.num_filters):
for h in range(output_height):
for w in range(output_width):
vertical_start = h * self.stride
vertical_end = vertical_start + self.filter_size
horizontal_start = w * self.stride
horizontal_end = horizontal_start + self.filter_size
output[i, j, h, w] = np.sum(x[i, :, vertical_start:vertical_end, horizontal_start:horizontal_end] * self.filters[j])
return output
```
以上代码中,`FullyConnectedLayer` 类表示全连接层,它的前向传播方法 `forward` 接受输入数据 `x`,并输出经过权重和偏置计算后的结果。`ConvolutionalLayer` 类表示卷积层,它的前向传播方法 `forward` 接受输入数据 `x`,并输出经过卷积计算后的结果。
需要注意的是,以上代码仅为示例代码,实际使用时需要考虑更多的细节和实现方式。
阅读全文