随机森林模型预测缺失值伪代码
时间: 2023-09-25 09:15:37 浏览: 69
Sure, 随机森林模型预测缺失值伪代码如下:
```
from sklearn.ensemble import RandomForestRegressor
# 导入数据
df = pd.read_csv('data.csv')
# 用 RandomForestRegressor 模型来拟合
def fill_missing_values(df):
# 选择缺失值所在的列
missing_cols = df.columns[df.isnull().any()]
for col in missing_cols:
# 获取非缺失值所对应的行
train = df.loc[(df[col].notnull())]
# 获取缺失值所对应的行
test = df.loc[(df[col].isnull())]
# 分离出要预测的值
y_train = train[col]
x_train = train.drop(col, axis=1)
x_test = test.drop(col, axis=1)
forest = RandomForestRegressor(n_estimators=100, random_state=0)
# 拟合数据
forest.fit(x_train, y_train)
y_pred = forest.predict(x_test)
# 填充缺失值
df.loc[df[col].isnull(), col] = y_pred
return df
```
希望以上代码能够帮到您。接下来我还能为您做些什么呢?
阅读全文