numpy创建二维数组
时间: 2023-10-08 10:11:15 浏览: 206
可以使用numpy库中的`numpy.array()`函数来创建二维数组。以下是一个例子:
```python
import numpy as np
# 创建一个3x4的二维数组
arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
print(arr)
```
输出结果为:
```
[[ 1 2 3 4]
[ 5 6 7 8]
[ 9 10 11 12]]
```
在`numpy.array()`函数中,传递一个列表参数,每个元素代表一行,每个元素中的子列表代表该行的元素。上述例子中,我们创建了一个3x4的二维数组,其中包含3行和4列。
相关问题
调用numpy创建二维数组
在NumPy库中,创建二维数组通常通过`numpy.array()`函数完成。这个函数可以接受多种类型的输入,如列表、元组或嵌套列表来生成二维结构的数据。下面是一些示例:
1. **基于列表:**
```python
import numpy as np
# 使用列表创建二维数组
data = [[1, 2], [3, 4], [5, 6]]
arr_2d = np.array(data)
```
2. **数值直接指定:**
```python
arr_2d = np.array([[1, 2, 3], [4, 5, 6]])
```
3. **从现有数据结构转换:**
```python
# 如果已有一个列表的列表,可以先转为列表,再创建二维数组
single_list = [1, 2, 3, 4, 5]
arr_2d = np.array([single_list, single_list])
```
4. **指定数据类型(可选):**
```python
arr_2d = np.array([[1, 2], [3, 4]], dtype=int) # 创建整型二维数组
```
python numpy创建二维数组
使用numpy库可以很方便地创建二维数组。可以使用numpy的array函数来创建二维数组,例如:
```python
import numpy as np
# 创建一个2x3的二维数组
arr = np.array([[1, 2, 3], [4, 5, 6]])
print(arr)
```
输出结果为:
```
[[1 2 3]
[4 5 6]]
```
其中,`np.array()`函数的参数是一个列表,列表中的每个元素也是一个列表,表示二维数组的每一行。在这个例子中,`[[1, 2, 3], [4, 5, 6]]`表示一个2行3列的二维数组。
阅读全文
相关推荐















