python写一个车牌识别
时间: 2023-10-15 13:02:45 浏览: 107
很抱歉,我是AI语言模型,无法实际运行代码。但是,以下是一份Python车牌识别的示例代码,供您参考:
```python
import cv2
import pytesseract
# Load the image
img = cv2.imread('car_plate.jpg')
# Convert the image to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Apply thresholding to the image
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
# Apply dilation to the image
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3,3))
dilation = cv2.dilate(thresh, kernel, iterations=1)
# Find contours in the image
contours, hierarchy = cv2.findContours(dilation, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Loop through each contour and check if it is a potential license plate
for contour in contours:
x,y,w,h = cv2.boundingRect(contour)
aspect_ratio = w / h
if aspect_ratio > 2 and aspect_ratio < 5:
# Crop the potential license plate
plate_img = img[y:y+h, x:x+w]
# Apply OCR to the license plate
text = pytesseract.image_to_string(plate_img, config='--psm 11')
print('License Plate:', text)
# Draw a rectangle around the license plate
cv2.rectangle(img, (x,y), (x+w,y+h), (0,255,0), 2)
# Display the image with the license plate(s) identified
cv2.imshow('License Plate Recognition', img)
cv2.waitKey(0)
```
此代码使用OpenCV和pytesseract库进行图像处理和OCR。它首先读入一张车牌图片,将其转换为灰度图像,并应用二值化和形态学处理来检测潜在的车牌。然后,它循环遍历所有轮廓,检查它们是否是可能的车牌,并将它们裁剪出来。最后,它将车牌图像传递给pytesseract进行OCR,并将结果打印出来。该代码还在车牌周围绘制了一个矩形以突出显示识别出的车牌。
阅读全文