LKH算法python实现
时间: 2023-09-28 22:11:15 浏览: 270
LKH算法是一个经典的TSP问题求解算法,下面是一个简单的Python实现,仅供参考:
```python
import random
import math
# 计算两个城市之间的距离
def distance(city1, city2):
return math.sqrt((city1[0] - city2[0]) ** 2 + (city1[1] - city2[1]) ** 2)
# 生成随机的城市坐标
def generate_cities(num_cities):
cities = []
for i in range(num_cities):
x = random.random()
y = random.random()
cities.append((x, y))
return cities
# 计算路径长度
def path_length(path, cities):
return sum(distance(cities[path[i]], cities[path[i+1]]) for i in range(len(path)-1)) + distance(cities[path[-1]], cities[path[0]])
# 两点交换
def two_opt(path, i, j):
return path[:i] + path[i:j+1][::-1] + path[j+1:]
# LKH算法
def lkh(num_cities, num_iterations):
cities = generate_cities(num_cities)
path = list(range(num_cities))
best_path = path[:]
best_length = path_length(best_path, cities)
for iteration in range(num_iterations):
for i in range(1, num_cities-1):
for j in range(i+1, num_cities):
new_path = two_opt(path, i, j)
new_length = path_length(new_path, cities)
if new_length < best_length:
best_path = new_path[:]
best_length = new_length
path = best_path[:]
return best_length, best_path
# 测试代码
if __name__ == '__main__':
num_cities = 20
num_iterations = 1000
best_length, best_path = lkh(num_cities, num_iterations)
print('Best length:', best_length)
print('Best path:', best_path)
```
以上代码实现了LKH算法的基本思路,但是由于时间复杂度较高,对于大规模数据的求解效率较低,需要进行优化。
阅读全文