实现mapreduce wordcount单词词汇统计
时间: 2023-11-05 09:16:33 浏览: 75
好的,这是一个比较经典的问题,实现MapReduce的WordCount单词词汇统计可以分为以下几个步骤:
1. Map阶段:将输入的文本文件按照空格或其他分隔符进行分割,每个分割出来的单词作为key,值为1,即将每个单词映射为(key, value)键值对。
2. Shuffle阶段:将Map阶段输出的键值对按照key进行排序,并将相同key的value合并为一个数组。
3. Reduce阶段:对每个key的values数组进行遍历,将其中的值累加即可得到该单词的词频。
以下是MapReduce的WordCount单词词汇统计的Java代码示例:
```java
public class WordCount {
public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
context.write(word, one);
}
}
}
public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
context.write(key, new IntWritable(sum));
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "wordcount");
job.setJarByClass(WordCount.class);
job.setMapperClass(Map.class);
job.setCombinerClass(Reduce.class);
job.setReducerClass(Reduce.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
```
以上就是MapReduce的WordCount单词词汇统计的实现过程和Java代码示例。
阅读全文