kmeans = KMeans(n_clusters=2, init='k-means++', random_state=0).fit(X) labels = kmeans.labels_ print(labels) segmented_img = labels.reshape(img.shape) pil_image = Image.fromarray(segmented_img, 'L') pil_image.save('D:\\gray_image.png')
时间: 2023-06-26 07:06:07 浏览: 82
利用kmeans进行图像分割
这段代码使用了K-means算法对输入的图像进行分割。首先,通过调用KMeans函数创建一个KMeans对象,设定聚类数为2,采用k-means++算法进行初始化,并设置随机种子为0。然后,对输入的图像数据X进行聚类,并获取每个数据点所属的簇标签。最后,将簇标签重新排列成与原始图像相同的形状,并将其保存为灰度图像。如果需要了解更多关于K-means算法的内容,可以参考相关资料。
阅读全文