algorithm = (KMeans(n_clusters = 6 ,init='k-means++', n_init = 10 ,max_iter=300, tol=0.0001, random_state= 0 , algorithm='elkan') ) algorithm.fit(X1) centroids1 = algorithm.cluster_centers_ labels1 = algorithm.labels_ print(labels1) 将centroids1降维
时间: 2023-09-09 14:08:17 浏览: 126
将`centroids1`降维可以使用主成分分析(PCA)或者 t-SNE 等方法。下面是对`centroids1`进行 PCA 降维的示例代码:
```python
from sklearn.decomposition import PCA
# 定义 PCA 模型,将维度降至 2
pca = PCA(n_components=2)
# 对 centroids1 进行降维
centroids1_reduced = pca.fit_transform(centroids1)
# 输出降维后的结果
print(centroids1_reduced)
```
这样就可以将`centroids1`从原来的高维空间中降至二维空间了。
相关问题
KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300, n_clusters=3, n_init=10, n_jobs=1, precompute_distances='auto', random_state=None, tol=0.0001, verbose=0)
这是一个用于聚类的KMeans算法,其中参数有:
- algorithm:用于计算的算法,'auto'表示自动选择,也可以指定'full'、'elkan'。
- copy_x:是否将数据复制一份,True表示复制,False表示直接在原数据上进行计算,一般建议设置为True。
- init:初始化质心的方法,'k-means++'表示使用k-means++算法,也可以使用'random'或者自定义质心的ndarray。
- max_iter:最大迭代次数,当达到最大迭代次数时强制停止迭代。
- n_clusters:聚类簇的数量,即将数据划分为几个簇。
- n_init:初始化质心的次数,每次初始化后会进行一次聚类,最终选择最优的一次聚类结果。
- n_jobs:指定使用的CPU数量,-1表示使用所有可用的CPU。
- precompute_distances:是否提前计算距离,'auto'表示自动选择,也可以指定True或False。
- random_state:随机数种子,用于控制每次初始化质心的随机过程,设置为一个固定值可以保证每次聚类结果一致。
- tol:聚类结果的收敛阈值,当两次聚类结果的差距小于该阈值时认为聚类已经收敛。
- verbose:是否输出详细信息,0表示不输出,1表示输出。
import pandas as pd import numpy as np from sklearn.cluster import DBSCAN from sklearn import metrics from sklearn.cluster import KMeans import os def dbscan(input_file): ## 纬度在前,经度在后 [latitude, longitude] columns = ['lat', 'lon'] in_df = pd.read_csv(input_file, sep=',', header=None, names=columns) # represent GPS points as (lat, lon) coords = in_df.as_matrix(columns=['lat', 'lon']) # earth's radius in km kms_per_radian = 6371.0086 # define epsilon as 0.5 kilometers, converted to radians for use by haversine # This uses the 'haversine' formula to calculate the great-circle distance between two points # that is, the shortest distance over the earth's surface # http://www.movable-type.co.uk/scripts/latlong.html epsilon = 0.5 / kms_per_radian # radians() Convert angles from degrees to radians db = DBSCAN(eps=epsilon, min_samples=15, algorithm='ball_tree', metric='haversine').fit(np.radians(coords)) cluster_labels = db.labels_ # get the number of clusters (ignore noisy samples which are given the label -1) num_clusters = len(set(cluster_labels) - set([-1])) print('Clustered ' + str(len(in_df)) + ' points to ' + str(num_clusters) + ' clusters') # turn the clusters in to a pandas series # clusters = pd.Series([coords[cluster_labels == n] for n in range(num_clusters)]) # print(clusters) kmeans = KMeans(n_clusters=1, n_init=1, max_iter=20, random_state=20) for n in range(num_clusters): # print('Cluster ', n, ' all samples:') one_cluster = coords[cluster_labels == n] # print(one_cluster[:1]) # clist = one_cluster.tolist() # print(clist[0]) kk = kmeans.fit(one_cluster) print(kk.cluster_centers_) def main(): path = './datas' filelist = os.listdir(path) for f in filelist: datafile = os.path.join(path, f) print(datafile) dbscan(datafile) if __name__ == '__main__': main()
这是一个 Python 代码,主要使用了 Pandas、NumPy、sklearn.cluster 等库实现了 DBSCAN 和 KMeans 聚类算法。代码读入了一个文件夹中的多个文件,每个文件都是 GPS 坐标点的经纬度信息,然后使用 DBSCAN 算法进行聚类,并且输出了聚类的个数。接着使用 KMeans 算法对每个聚类进行细分,最后输出每个聚类的中心点坐标。
阅读全文