rbf神经网络pid simulink

时间: 2023-05-31 07:19:29 浏览: 117
### 回答1: rbf神经网络是一种基于径向基函数的神经网络,可以用于分类、回归和控制等领域。PID是一种经典的控制算法,用于调节系统的输出,使其达到期望值。Simulink是MATLAB的一个工具箱,用于建立和模拟动态系统模型。在Simulink中,可以使用rbf神经网络和PID控制器来设计和模拟控制系统。 ### 回答2: rbf神经网络PID控制是一种新型的控制方法,该方法基于神经网络,采用反向传播算法优化,能够更好地解决非线性系统的PID控制问题,同时也可以实现更精确的控制。 在PID控制中,通常采用的是线性控制器,但是对于非线性系统来说,线性控制器无法达到理想的控制效果。而rbf神经网络PID控制是一种非线性控制器,其可以通过神经网络模型来预测系统输出,并根据预测误差进行PID控制。 在Simulink中进行rbf神经网络PID控制的实现,通常需要进行如下步骤: 1. 搭建rbf神经网络模型:在Simulink中可以使用神经网络模块搭建rbf神经网络模型,通过添加隐层节点和输入输出节点设置网络结构。 2. 训练rbf神经网络模型:使用反向传播算法或者径向基函数法训练rbf神经网络模型,在训练过程中需要设置训练数据和训练参数。 3. 进行PID控制:利用训练好的rbf神经网络模型进行PID控制,通过控制输入和反馈信号计算误差,并根据误差进行PID控制计算。 需要注意的是,在使用rbf神经网络PID控制进行非线性系统控制时,参数设置和训练数据的选择非常重要,需要根据实际情况进行合理的选择,以保证控制效果的良好。 总之,rbf神经网络PID控制在非线性系统控制方面具有较好的应用前景,通过Simulink的支持可以更方便地实现该控制方法。 ### 回答3: RBF神经网络是一种基于径向基函数的神经网络模型,常用于函数逼近、分类、聚类等领域。PID控制器是一种经典的反馈控制器,主要用于控制某个系统的输出。Simulink是MATLAB中的一款用于建立、模拟和分析动态系统的软件,具有丰富的仿真工具和库函数。 在实际应用中,可以利用RBF神经网络设计PID控制器,通过训练神经网络优化PID控制器的参数。具体思路是,首先采集系统的输入输出数据,建立RBF神经网络模型并训练得到模型的权重参数。然后,在Simulink中建立PID控制器模型,并将神经网络模型的输出作为控制器的输入,通过调节PID参数使得控制器输出能够更好地满足设定目标。最后,通过Simulink的仿真功能,验证优化后的PID控制器的性能是否得到了优化。 在实际应用中,这种方法可以有效地提高控制系统的鲁棒性和稳定性,降低系统的误差和振荡幅度。同时,这种方法具有一定的适应性,可以用于不同类型的系统控制,并且可以通过增加神经网络层数、调整RBF函数参数等方式对模型进行进一步优化。

相关推荐

基于RBF(径向基函数)神经网络控制Simulink是一种将神经网络应用于实时控制系统的方法。Simulink是一款MATLAB的扩展工具,用于模拟和设计动态系统。RBF神经网络是一种前向连接神经网络,其基本思想是通过将输入空间划分为一组正态分布的径向基函数,将输入映射到隐含空间中,然后通过线性组合输出得到最终结果。 在Simulink中,我们可以使用RBF神经网络来建模和控制复杂的实时系统。首先,我们需要准备训练数据集以训练RBF神经网络。数据集应包含输入和对应的期望输出。然后,在Simulink中,我们可以建立RBF神经网络模型,并使用数据集对其进行训练。训练过程将调整神经网络的权重和偏置,以使其能够准确地对输入进行预测。 训练完成后,我们可以将RBF神经网络模型应用于实时控制中。在Simulink中,我们可以将输入传递给RBF神经网络模型并获取其输出。输出可以用于控制实时系统的执行。例如,我们可以将控制信号发送给执行器,以调整系统状态。 基于RBF神经网络控制Simulink具有一些优点。首先,RBF神经网络可以适应非线性和复杂的系统。其次,Simulink提供了可视化的界面和丰富的工具,使控制系统的建模和控制变得更加直观和容易。此外,通过结合神经网络和Simulink,我们可以实现实时控制,并且对于不同的系统和场景,可以进行快速有效的迭代和测试。 总而言之,基于RBF神经网络控制Simulink是一种强大的方法,可以应用于实时控制系统。通过训练RBF神经网络模型并将其与Simulink集成,我们可以实现对复杂系统的准确控制和模拟。
MATLAB是应用领域广泛的科学计算软件,其在控制系统设计中的应用也很广泛。其中常用的控制算法包括RBF神经网络和PID控制。这两种算法可以互相结合,形成更为优化的控制策略。下面就MATLAB中的RBF神经网络PID控制进行详细介绍。 首先,RBF神经网络是一种基于径向基函数(Radial Basis Function)的神经网络,其结构简单、运算速度快、学习能力强,广泛应用于控制系统中。当神经网络学习完成后,在控制系统中可以利用其对于输入与输出的映射关系进行预测和控制。 与此同时,PID控制器则是一种通过将误差的比例、积分和微分进行组合,从而对被控对象进行控制的经典控制算法。PID控制器具有控制精度高、实现简单等优点,在现实的控制系统中被广泛使用。 在MATLAB中,将RBF神经网络与PID控制器结合起来进行控制,可以提高系统的控制精度和稳定性。具体操作步骤如下: 1.首先,需要建立一个包括输入、输出和神经元个数的神经网络模型。 2.然后,将PID控制器与RBF神经网络进行连接,形成控制系统。 3.针对实际控制系统,调整RBF神经网络的参数,如学习率和神经元个数等。 4.利用MATLAB的仿真功能,对系统进行模拟和调试,寻找合适的PID参数并进行优化。最终可得到一个控制精度高、稳定性强的控制系统。 总之,MATLAB中的RBF神经网络PID控制是一种非常有效的控制策略,其可以大大提高控制精度和稳定性。但其实现过程中需要注意参数的调整和优化,以及仿真结果的验证和误差分析等问题。
### 回答1: 神经网络PID Simulink是指在Simulink软件中使用神经网络算法实现PID控制器的设计。在传统PID控制器中,控制参数是通过数学方法推导并调整得到的。而在神经网络PID控制器中,控制参数则是在神经网络中自适应得到的。 神经网络PID控制器的设计过程可以分为以下几个步骤: 1. 数据采集:通过传感器或其他方式采集必要的控制数据,如温度、压力、流量等。 2. 网络结构设计:根据控制对象的性质和控制要求,选择合适的神经网络结构,如BP神经网络、RBF神经网络等。 3. 训练网络:利用采集到的数据进行训练,训练的目标是使神经网络能够将输入信号转换为输出控制指令,从而实现对控制对象的控制。 4. 参数调整:根据控制效果对神经网络的参数进行调整,以提高控制性能和稳定性。 5. 系统仿真:使用Simulink软件对设计的神经网络PID控制器进行仿真,评估控制效果。如果效果不理想,可以重新进行参数调整和网络结构设计。 总之,神经网络PID Simulink是一种优化PID控制器性能的方法,相比传统PID控制器更加精准、自适应性更强,而使用Simulink软件进行仿真可以有效评估控制效果,找出改进的方案。 ### 回答2: 神经网络PID Simulink是指在Simulink软件中使用神经网络模型实现PID控制器的设计和仿真。PID控制器是一种经典的控制算法,通过设定目标值和实际值的误差来计算并调整控制量,达到控制系统稳定的目的。然而,传统的PID控制器往往需要手动调整参数以适应不同的工程控制任务,在实际使用中存在难以调节、响应速度慢等问题。 而神经网络可以学习和适应不同的工程控制任务,并且可以处理非线性、复杂的系统动态特性。因此,将神经网络模型应用于PID控制器设计中,可以提高控制系统的性能、响应速度和鲁棒性。 在Simulink软件中,可以通过嵌入MATLAB函数、神经网络模块等方法来实现神经网络PID控制器的建模和仿真。首先,需要确定系统的控制目标和优化指标,并利用MATLAB工具箱训练和验证PID控制器的神经网络模型。然后,将神经网络模型嵌入到Simulink中,进行控制系统的建模和仿真。 通过神经网络PID Simulink仿真,可以评估不同的神经网络结构和参数对控制系统性能的影响,进一步优化控制器的参数,实现高效、精准的工程控制。 ### 回答3: 神经网络PID Simulink是指将神经网络模型应用于PID控制器的设计中,以提高控制效果。神经网络PID控制是一种智能控制方法,它能够自适应地决定PID控制器的参数,从而不断调整控制器的输出,使系统稳定运行。Simulink则是一种基于模型的仿真工具,可以模拟各种控制系统,方便用户对复杂系统进行仿真分析。 使用神经网络PID Simulink,可以通过神经网络的学习能力,提高控制器的自适应性和稳定性,处理非线性和时变的控制系统。同时,通过Simulink可以方便地搭建模型、仿真、调试和优化控制器。因此,神经网络PID Simulink是一种非常实用的控制器设计方法,可应用于多个领域,如机械、电子、化工等。
rbf神经网络是一种基于径向基函数的神经网络模型。它由一个输入层、一个隐藏层和一个输出层组成。隐藏层中的神经元使用径向基函数作为激活函数,常见的径向基函数包括高斯函数、多项式函数等。隐藏层的神经元用于将输入数据映射到高维空间中,然后通过输出层进行分类或回归。 在Matlab中,可以使用神经网络工具箱(Neural Network Toolbox)来实现rbf神经网络。具体步骤如下: 1. 准备数据集:将数据集划分为训练集和测试集,并进行预处理(如归一化)。 2. 创建rbf神经网络:使用newrb函数创建一个rbf神经网络对象。 3. 配置rbf神经网络:设置网络的参数,包括隐藏层神经元数量、径向基函数的宽度等。 4. 训练rbf神经网络:使用train函数对rbf神经网络进行训练,输入参数包括训练集和目标值。 5. 测试rbf神经网络:使用sim函数对训练好的神经网络进行测试,输入参数为测试集。 以下是一个简单的示例代码: matlab % 示例数据 x = linspace(-pi, pi, 100); y = sin(x); % 创建rbf神经网络 net = newrb(x, y, 0.1, 1, 10); % 训练rbf神经网络 net = train(net, x, y); % 测试rbf神经网络 y_pred = sim(net, x); % 绘制结果 plot(x, y, 'b', x, y_pred, 'r'); legend('真实值', '预测值'); 以上代码演示了如何使用Matlab的神经网络工具箱来实现一个简单的rbf神经网络,并对正弦函数进行拟合和预测。根据具体问题的不同,你可以根据需要自定义网络的结构和参数。
### 回答1: Python的RBF(Radial Basis Function)神经网络是一种常用于模式识别和函数逼近的人工神经网络模型。 RBF神经网络由三层组成:输入层、隐含层和输出层。其中,输入层用于接收输入数据,隐含层是一个由多个径向基函数组成的非线性层,输出层则输出最终的预测结果。 RBF神经网络的核心在于径向基函数,它的作用是根据输入和网络权重计算隐含层神经元的输出。常用的径向基函数有高斯函数、多项式函数和正切函数等。 RBF神经网络的训练过程包括两个主要步骤:中心选择和权重训练。中心选择是根据输入数据选择合适的隐含层神经元中心点,常用的方法有随机选择和K均值聚类算法等。权重训练是通过最小化均方误差来调整网络权重,常用的方法有最小二乘法和梯度下降法等。 RBF神经网络具有以下优点:能够处理非线性问题,对噪声有很强的鲁棒性,具有快速训练和高性能的优势。此外,Python作为一种简单易学的编程语言,具有丰富的科学计算库和机器学习工具,非常适合实现RBF神经网络。 总的来说,Python的RBF神经网络是一种强大的神经网络模型,可用于解决一些复杂的模式识别和函数逼近问题,在实际应用中具有良好的效果。 ### 回答2: RBF(径向基函数)神经网络是一种基于非线性函数的监督学习算法,它在机器学习和模式识别领域中得到广泛应用。Python中有多个库可以用于实现RBF神经网络,如SciKit-learn、Keras和TensorFlow等。 RBF神经网络是一种具有三层结构的神经网络,包括输入层、隐藏层和输出层。隐藏层中的神经元使用径向基函数作为激活函数,常见的径向基函数有高斯函数和多项式函数等。这些函数的选择取决于具体的问题和数据特征。 RBF神经网络的训练过程包括两个主要步骤:中心点选择和权重计算。中心点选择通常使用聚类算法(如k-means)来确定隐层中的中心点。然后,通过计算每个样本与中心点之间的距离,并应用径向基函数将距离转化为激活值。最后,利用线性回归或最小二乘法等方法计算输出层的权重。 Python中,我们可以使用SciKit-learn库来实现RBF神经网络。首先,通过调用“sklearn.cluster.KMeans”类来进行隐层中心点的选择。然后,使用“sklearn.metrics.pairwise_distances”计算每个样本与中心点之间的距离。接下来,通过调用“sklearn.linear_model.LinearRegression”等类,我们可以应用线性回归等方法计算输出层的权重。最后,我们可以使用训练好的模型进行预测。 Python中的RBF神经网络极大地简化了神经网络模型的构建和训练过程,并提供了丰富的函数库来支持模型的评估和优化。同时,Python具有良好的可读性和易用性,使得使用RBF神经网络进行机器学习变得更加便捷和高效。 ### 回答3: RBF(Radial Basis Function)神经网络是一种基于径向基函数的神经网络模型。它包括输入层、隐藏层和输出层,其中隐藏层采用径向基函数作为激活函数。下面是对python中RBF神经网络的解释: 在Python中,我们可以使用一些库来实现RBF神经网络,如scikit-learn和keras。这些库提供了一些内置的函数和模块,使得实现RBF神经网络变得更加简单和高效。 首先,我们需要导入所需的库和模块。然后,我们可以使用这些库来创建一个RBF神经网络模型。在scikit-learn中,我们可以使用RBF核函数来作为隐藏层的激活函数。我们可以通过设置模型的参数来调整隐藏层的大小和输出层的大小等。 接下来,我们可以使用模型的fit函数来训练RBF神经网络。在训练过程中,我们可以将输入数据和对应的目标值传递给fit函数,模型将根据输入的数据来学习和调整网络的权重和偏置。训练完成后,我们可以使用模型的predict函数来进行预测。 Python中的RBF神经网络具有一些优势。首先,它能够处理非线性问题,因为它使用径向基函数作为激活函数。其次,RBF神经网络具有较少的参数,这使得它在模型训练和预测方面更加高效。此外,通过合理选择核函数和调整模型的参数,我们可以提高网络的性能。 总结来说,Python中的RBF神经网络是一种通过径向基函数作为激活函数的神经网络模型。通过使用scikit-learn和keras等库,我们可以方便地实现和训练RBF神经网络。这种网络具有处理非线性问题和高效的优势,其性能可以通过合理选择核函数和调整模型参数来优化。

最新推荐

Python实现的径向基(RBF)神经网络示例

主要介绍了Python实现的径向基(RBF)神经网络,结合完整实例形式分析了Python径向基(RBF)神经网络定义与实现技巧,需要的朋友可以参考下

chromedriver_win32_2.26.zip

chromedriver可执行程序下载,请注意对应操作系统和浏览器版本号,其中文件名规则为 chromedriver_操作系统_版本号,比如 chromedriver_win32_102.0.5005.27.zip表示适合windows x86 x64系统浏览器版本号为102.0.5005.27 chromedriver_linux64_103.0.5060.53.zip表示适合linux x86_64系统浏览器版本号为103.0.5060.53 chromedriver_mac64_m1_101.0.4951.15.zip表示适合macOS m1芯片系统浏览器版本号为101.0.4951.15 chromedriver_mac64_101.0.4951.15.zip表示适合macOS x86_64系统浏览器版本号为101.0.4951.15 chromedriver_mac_arm64_108.0.5359.22.zip表示适合macOS arm64系统浏览器版本号为108.0.5359.22

分布式高并发.pdf

分布式高并发

基于多峰先验分布的深度生成模型的分布外检测

基于多峰先验分布的深度生成模型的似然估计的分布外检测鸭井亮、小林圭日本庆应义塾大学鹿井亮st@keio.jp,kei@math.keio.ac.jp摘要现代机器学习系统可能会表现出不期望的和不可预测的行为,以响应分布外的输入。因此,应用分布外检测来解决这个问题是安全AI的一个活跃子领域概率密度估计是一种流行的低维数据分布外检测方法。然而,对于高维数据,最近的工作报告称,深度生成模型可以将更高的可能性分配给分布外数据,而不是训练数据。我们提出了一种新的方法来检测分布外的输入,使用具有多峰先验分布的深度生成模型。我们的实验结果表明,我们在Fashion-MNIST上训练的模型成功地将较低的可能性分配给MNIST,并成功地用作分布外检测器。1介绍机器学习领域在包括计算机视觉和自然语言处理的各个领域中然而,现代机器学习系统即使对于分

阿里云服务器下载安装jq

根据提供的引用内容,没有找到与阿里云服务器下载安装jq相关的信息。不过,如果您想在阿里云服务器上安装jq,可以按照以下步骤进行操作: 1.使用wget命令下载jq二进制文件: ```shell wget https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64 -O jq ``` 2.将下载的jq文件移动到/usr/local/bin目录下,并添加可执行权限: ```shell sudo mv jq /usr/local/bin/ sudo chmod +x /usr/local/bin/jq ``` 3.检查j

毕业论文java vue springboot mysql 4S店车辆管理系统.docx

包括摘要,背景意义,论文结构安排,开发技术介绍,需求分析,可行性分析,功能分析,业务流程分析,数据库设计,er图,数据字典,数据流图,详细设计,系统截图,测试,总结,致谢,参考文献。

"结构化语言约束下的安全强化学习框架"

使用结构化语言约束指导安全强化学习Bharat Prakash1,Nicholas Waytowich2,Ashwinkumar Ganesan1,Tim Oates1,TinooshMohsenin11马里兰大学,巴尔的摩县(UMBC),2美国陆军研究实验室,摘要强化学习(RL)已经在解决复杂的顺序决策任务中取得了成功,当一个定义良好的奖励函数可用时。对于在现实世界中行动的代理,这些奖励函数需要非常仔细地设计,以确保代理以安全的方式行动。当这些智能体需要与人类互动并在这种环境中执行任务时,尤其如此。然而,手工制作这样的奖励函数通常需要专门的专业知识,并且很难随着任务复杂性而扩展。这导致了强化学习中长期存在的问题,即奖励稀疏性,其中稀疏或不明确的奖励函数会减慢学习过程,并导致次优策略和不安全行为。 更糟糕的是,对于RL代理必须执行的每个任务,通常需要调整或重新指定奖励函数。另一�

mac redis 的安装

以下是在Mac上安装Redis的步骤: 1. 打开终端并输入以下命令以安装Homebrew: ```shell /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)" ``` 2. 安装Redis: ```shell brew install redis ``` 3. 启动Redis服务: ```shell brew services start redis ``` 4. 验证Redis是否已成功安装并正在运行: ```shell redis-cli ping

计算机应用基础Excel题库--.doc

计算机应用根底Excel题库 一.填空 1.Excel工作表的行坐标范围是〔 〕。 2.对数据清单中的数据进行排序时,可按某一字段进行排序,也可按多个字段进行排序 ,在按多个字段进行排序时称为〔 〕。 3.对数据清单中的数据进行排序时,对每一个字段还可以指定〔 〕。 4.Excel97共提供了3类运算符,即算术运算符.〔 〕 和字符运算符。 5.在Excel中有3种地址引用,即相对地址引用.绝对地址引用和混合地址引用。在公式. 函数.区域的指定及单元格的指定中,最常用的一种地址引用是〔 〕。 6.在Excel 工作表中,在某单元格的编辑区输入"〔20〕〞,单元格内将显示( ) 7.在Excel中用来计算平均值的函数是( )。 8.Excel中单元格中的文字是( 〕对齐,数字是( )对齐。 9.Excel2021工作表中,日期型数据"2008年12月21日"的正确输入形式是( )。 10.Excel中,文件的扩展名是( )。 11.在Excel工作表的单元格E5中有公式"=E3+$E$2",将其复制到F5,那么F5单元格中的 公式为( )。 12.在Excel中,可按需拆分窗口,一张工作表最多拆分为 ( )个窗口。 13.Excel中,单元格的引用包括绝对引用和( ) 引用。 中,函数可以使用预先定义好的语法对数据进行计算,一个函数包括两个局部,〔 〕和( )。 15.在Excel中,每一张工作表中共有( )〔行〕×256〔列〕个单元格。 16.在Excel工作表的某单元格内输入数字字符串"3997",正确的输入方式是〔 〕。 17.在Excel工作薄中,sheet1工作表第6行第F列单元格应表示为( )。 18.在Excel工作表中,单元格区域C3:E4所包含的单元格个数是( )。 19.如果单元格F5中输入的是=$D5,将其复制到D6中去,那么D6中的内容是〔 〕。 Excel中,每一张工作表中共有65536〔行〕×〔 〕〔列〕个单元格。 21.在Excel工作表中,单元格区域D2:E4所包含的单元格个数是( )。 22.Excel在默认情况下,单元格中的文本靠( )对齐,数字靠( )对齐。 23.修改公式时,选择要修改的单元格后,按( )键将其删除,然后再输入正确的公式内容即可完成修改。 24.( )是Excel中预定义的公式。函数 25.数据的筛选有两种方式:( )和〔 〕。 26.在创立分类汇总之前,应先对要分类汇总的数据进行( )。 27.某一单元格中公式表示为$A2,这属于( )引用。 28.Excel中的精确调整单元格行高可以通过〔 〕中的"行〞命令来完成调整。 29.在Excel工作簿中,同时选择多个相邻的工作表,可以在按住( )键的同时,依次单击各个工作表的标签。 30.在Excel中有3种地址引用,即相对地址引用、绝对地址引用和混合地址引用。在公式 、函数、区域的指定及单元格的指定中,最常用的一种地址引用是〔 〕。 31.对数据清单中的数据进行排序时,可按某一字段进行排序,也可按多个字段进行排序 ,在按多个字段进行排序时称为〔 〕。多重排序 32.Excel工作表的行坐标范围是( 〕。1-65536 二.单项选择题 1.Excel工作表中,最多有〔〕列。B A.65536 B.256 C.254 D.128 2.在单元格中输入数字字符串100083〔邮政编码〕时,应输入〔〕。C A.100083 B."100083〞 C. 100083   D.'100083 3.把单元格指针移到AZ1000的最简单方法是〔〕。C A.拖动滚动条 B.按+〈AZ1000〉键 C.在名称框输入AZ1000,并按回车键 D.先用+〈 〉键移到AZ列,再用+〈 〉键移到1000行 4.用〔〕,使该单元格显示0.3。D A.6/20 C.="6/20〞 B. "6/20〞 D.="6/20〞 5.一个Excel工作簿文件在第一次存盘时不必键入扩展名,Excel自动以〔B〕作为其扩展 名。 A. .WK1 B. .XLS C. .XCL D. .DOC 6.在Excel中,使用公式输入数据,一般在公式前需要加〔〕A A.= B.单引号 C.$ D.任意符号 7.在公式中输入"=$C1+E$1〞是〔〕C A.相对引用 B.绝对引用 C.混合引用 D.任意引用 8.以下序列中,不能直接利用自动填充快速输入的是〔 〕B A.星期一.星期二.星期三 .…… B.第一类.第二类.第三类.…… C.甲.乙.丙.…… D.Mon.Tue.Wed.…… 9.工作表中K16单元格中为公式"=F6×$D$4〞,在第3行处插入一行,那么插入后K7单元 格中的公式为〔 〕A A.=F7*$D$5 B.=F7*$D$4 C

基于PC机资源的分布式计算系统中相干任务求解方法及其优势

© 2014 Anatoly Kalyaev,Iakov Korovin.出版社:Elsevier B.V.由美国应用科学研究所负责选择和/或同行评审可在www.sciencedirect.com在线获取ScienceDirectAASRI Procedia 9(2014)131 - 1372014年AASRI电路与信号处理会议(CSP 2014)利用空闲PC机解决相干任务Anatoly Kalyaeva *,Iakov Korovina南方联邦大学多处理器计算系统科学研究所,2,塔甘罗格347922,俄罗斯摘要本文提出了一种基于PC机资源的分布式计算系统中相干任务求解的新方法。这些资源的参数是动态变化的,这使得它很难在分布式计算中的应用。该方法采用多智能体方法,通过智能体的主动控制,实现了分布式计算系统中个人计算机的有效利用,并通过智能体之间的交互,分散调度任务求解过程。为了解决每一个传入的连贯任务,系统的代理联合成社区,这使得它更容易调度和执行计算。该方法的主要优点是降低了分布式�