resnet50代码
时间: 2024-12-25 21:11:56 浏览: 4
ResNet50是一种深度残差神经网络模型,由微软亚洲研究院于2015年提出,常用于计算机视觉任务,如图像分类、目标检测等。它特别设计了残差块(Residual Block),解决了深度学习训练过程中梯度消失的问题,使得模型能够更深,提升性能。
以下是ResNet50的一个基本框架概述,通常是在PyTorch或TensorFlow这样的深度学习库中实现的:
```python
import torch.nn as nn
# ResNet的基本模块 - 残差块
class Bottleneck(nn.Module):
def __init__(self, in_channels, out_channels, stride=1):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels // 4, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels // 4)
self.conv2 = nn.Conv2d(out_channels // 4, out_channels // 4, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels // 4)
self.conv3 = nn.Conv2d(out_channels // 4, out_channels, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.shortcut = (in_channels != out_channels) or (stride != 1)
def forward(self, x):
residual = x
if self.shortcut:
residual = nn.functional.avg_pool2d(x, stride=stride)
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
return self.relu(out + residual) if self.shortcut else self.relu(out)
# 整个ResNet50模型
def resnet50(num_classes):
return nn.Sequential(
# ... 这里包含多个Bottleneck模块,通常分为几个阶段,每个阶段有不同的通道数和步长
nn.AdaptiveAvgPool2d((1, 1)),
nn.Flatten(),
nn.Linear(2048, num_classes) # 2048是ResNet50最后一层卷积后的特征维度
)
```
阅读全文