使用PyTorch实现的ResNet50代码
时间: 2024-04-16 15:27:22 浏览: 107
pytorch环境下ResNet示例代码
以下是使用PyTorch实现的ResNet50代码示例:
```python
import torch
import torch.nn as nn
# 定义基本的残差块
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_channels, out_channels, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.shortcut = nn.Sequential()
if stride != 1 or in_channels != self.expansion * out_channels:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, self.expansion * out_channels, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion * out_channels)
)
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out += self.shortcut(identity)
out = self.relu(out)
return out
# 定义ResNet50模型
class ResNet50(nn.Module):
def __init__(self, num_classes=1000):
super(ResNet50, self).__init__()
self.in_channels = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(64, 3)
self.layer2 = self._make_layer(128, 4, stride=2)
self.layer3 = self._make_layer(256, 6, stride=2)
self.layer4 = self._make_layer(512, 3, stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * BasicBlock.expansion, num_classes)
def _make_layer(self, out_channels, num_blocks, stride=1):
layers = []
layers.append(BasicBlock(self.in_channels, out_channels, stride))
self.in_channels = out_channels * BasicBlock.expansion
for _ in range(1, num_blocks):
layers.append(BasicBlock(self.in_channels, out_channels))
self.in_channels = out_channels * BasicBlock.expansion
return nn.Sequential(*layers)
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.maxpool(out)
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = self.avgpool(out)
out = torch.flatten(out, 1)
out = self.fc(out)
return out
# 创建ResNet50模型实例
model = ResNet50(num_classes=1000)
# 打印模型结构
print(model)
```
以上代码是一个使用PyTorch实现的ResNet50模型的示例。请注意,该代码只包含了模型的定义部分,并没有包括数据加载、训练和评估等部分。如果你需要完整的训练代码,请告诉我,我可以提供给你。
阅读全文