pytorch实现ResNet50模型
时间: 2023-09-26 07:10:15 浏览: 157
PyTorch实现ResNet50模型的代码如下所示:
```python
import torch
import torchvision.models as models
# 加载预训练的ResNet50模型
model = models.resnet50(pretrained=True)
# 替换最后一层全连接层的输出类别数
num_classes = 1000 # 假设分类数为1000
model.fc = torch.nn.Linear(model.fc.in_features, num_classes)
# 将模型设置为评估模式
model.eval()
```
在这段代码中,我们首先导入了`torch`和`torchvision.models`模块。然后,我们使用`models.resnet50(pretrained=True)`加载了预训练的ResNet50模型。接下来,我们替换了模型的最后一层全连接层,将其输出类别数设置为我们需要的分类数。最后,我们将模型设置为评估模式。
请注意,这段代码中没有使用到引用\[1\]、\[2\]和\[3\]中的具体内容,因为这些内容与问题的回答无关。
#### 引用[.reference_title]
- *1* [关于pytorch直接加载resnet50模型及模型参数](https://blog.csdn.net/eye123456789/article/details/124948949)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
- *2* *3* [pytorch实现resnet50(训练+测试+模型转换)](https://blog.csdn.net/gm_Ergou/article/details/118419795)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文