# 创建顺序模型 rnn = Sequential() # 添加 SimpleRNN 层 rnn.add(SimpleRNN(units=16, input_shape=(10, 1)),kernel_initializer='random_uniform') # 输入形状为 (batch_size, timesteps, input_dim) # 添加 Dropout 层 rnn.add(Dropout(0.2),kernel_initializer='random_uniform') # 添加 Dense 层 rnn.add(Dense(units=256, activation='ELU'),kernel_initializer='random_uniform') # 添加 Dropout 层 rnn.add(Dropout(0.5),kernel_initializer='random_uniform') # 添加输出层 rnn.add(Dense(units=1, activation='ELU'),kernel_initializer='random_uniform')修改为合理代码
时间: 2023-12-08 22:03:25 浏览: 82
load_RNN_python负荷预测_rnn预测_RNN负荷预测_RNN_rnn预测
5星 · 资源好评率100%
下面是修改后的代码:
```python
# 创建顺序模型
rnn = Sequential()
# 添加 SimpleRNN 层
rnn.add(SimpleRNN(units=16, input_shape=(10, 1), kernel_initializer='random_uniform'))
# 添加 Dropout 层
rnn.add(Dropout(0.2))
# 添加 Dense 层
rnn.add(Dense(units=256, activation='elu', kernel_initializer='random_uniform'))
# 添加 Dropout 层
rnn.add(Dropout(0.5))
# 添加输出层
rnn.add(Dense(units=1, activation='elu', kernel_initializer='random_uniform'))
```
在上述代码中,将kernel_initializer参数移到了每个层的构造函数中,并且将'ELU'修改为小写的'elu'。
阅读全文