创建LSTM模型,要求神经网络层数为2,输入维度为3,隐藏层维度为1,序列长度为50,训练轮次为60,批大小为32,损失函数为均方误差,学习率为0.002,优化器为Adam,创建回调函数,用于在每采用100组数据进行一次训练后进行一次验证,每采用100组数据进行一次训练后,即使用验证集的数据进行一次验证,输出每次验证的训练集损失和验证集损失
时间: 2024-03-03 08:52:52 浏览: 39
好的,以下是创建LSTM模型的代码,包括回调函数的设置:
```python
from keras.models import Sequential
from keras.layers import Dense, LSTM
from keras.callbacks import Callback
from sklearn.metrics import mean_squared_error
import numpy as np
# 创建回调函数
class ValLossCallback(Callback):
def __init__(self, validation_data):
self.validation_data = validation_data
def on_batch_end(self, batch, logs=None):
if batch % 100 == 0:
x_val, y_val = self.validation_data
y_pred = self.model.predict(x_val)
train_loss = logs['loss']
val_loss = mean_squared_error(y_val, y_pred)
print('Train loss: {}, Val loss: {}'.format(train_loss, val_loss))
# 设置参数
input_dim = 3
hidden_dim = 1
sequence_length = 50
batch_size = 32
epochs = 60
learning_rate = 0.002
# 创建模型
model = Sequential()
model.add(LSTM(hidden_dim, input_shape=(sequence_length, input_dim), return_sequences=True))
model.add(LSTM(hidden_dim, return_sequences=False))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam', metrics=['mse'])
# 生成数据
x_train = np.random.randn(1000, sequence_length, input_dim)
y_train = np.random.randn(1000, 1)
x_val = np.random.randn(100, sequence_length, input_dim)
y_val = np.random.randn(100, 1)
# 训练模型
model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, callbacks=[ValLossCallback((x_val, y_val))])
```
这个模型的结构是两层LSTM,每一层的隐藏层维度为1,输入维度为3,序列长度为50。训练轮次为60,批大小为32,损失函数为均方误差,学习率为0.002,优化器为Adam。回调函数ValLossCallback用于在每采用100组数据进行一次训练后进行一次验证,输出每次验证的训练集损失和验证集损失。
阅读全文