P3. UDP and TCP use 1s complement for their checksums. Suppose you have the following three 8-bit bytes: 01010011, 01100110, 01110100. What is the 1s complement of the sum of these 8-bit bytes? (Note that although UDP and TCP use 16-bit words in computing the checksum, for this problem you are being asked to consider 8-bit sums.) Show all work. Why is it that UDP takes the 1s complement of the sum; that is, why not just use the sum? With the 1s complement scheme, how does the receiver detect errors? Is it possible that a 1-bit error will go undetected? How about a 2-bit error?用中文回答

时间: 2024-04-27 07:20:06 浏览: 11
首先,我们需要将这三个8位字节相加,得到01010011 + 01100110 + 01110100 = 101011001。接下来,我们需要对这个和值取反,即111100110,这就是这三个8位字节的1s补码校验和。 UDP和TCP使用1s补码校验和是因为这种校验方式可以检测出1位比特错误。如果只使用简单的求和,那么可能会出现和值相同但数据不同的情况,这种情况是无法被检测出来的。 接收方如何检测错误呢?接收方会将接收到的数据按照与发送方相同的方法计算1s补码校验和,然后将接收到的校验和与计算出来的校验和进行比较。如果两个校验和不相等,那么就说明数据出现了错误。如果出现了2位比特错误,那么也有可能会被检测出来,但是存在一定的概率检测不出来。
相关问题

Using the mbed development environment and Freescale FRDM-KL25Z, the lamp brightness is adjusted using keys and three colors are displayed for brightness.it should detailed code comments

Sure, I can help you with that! Here's an example code for adjusting the brightness of an RGB LED using the keys on the Freescale FRDM-KL25Z board. The code is written in C++ using the mbed development environment: ``` #include "mbed.h" // Define pins for the RGB LED PwmOut red(LED_RED); PwmOut green(LED_GREEN); PwmOut blue(LED_BLUE); // Define pins for the keys DigitalIn key1(PTC6); DigitalIn key2(PTC7); // Define the initial brightness values float brightness = 0.5f; float redBrightness = 0.5f; float greenBrightness = 0.5f; float blueBrightness = 0.5f; int main() { // Set the PWM frequency for the RGB LED red.period(0.001f); green.period(0.001f); blue.period(0.001f); while(1) { // Check if key 1 is pressed if (key1 == 0) { // Increase the brightness brightness += 0.1f; if (brightness > 1.0f) { brightness = 1.0f; } } // Check if key 2 is pressed if (key2 == 0) { // Decrease the brightness brightness -= 0.1f; if (brightness < 0.0f) { brightness = 0.0f; } } // Update the red brightness redBrightness = brightness; // Update the green brightness greenBrightness = 1.0f - brightness; // Update the blue brightness blueBrightness = fabs(brightness - 0.5f) * 2.0f; // Set the PWM duty cycle for the RGB LED red.write(redBrightness); green.write(greenBrightness); blue.write(blueBrightness); // Wait for a short time wait(0.1f); } } ``` Let me explain the code in detail: - We first define the pins for the RGB LED and the keys using the `PwmOut` and `DigitalIn` classes from the mbed library. - We then define the initial brightness values for the RGB LED, which are all set to 50%. - In the `main()` function, we set the PWM frequency for the RGB LED and start an infinite loop. - Inside the loop, we check if the first key is pressed. If it is, we increase the brightness by 10% and make sure it doesn't go above 100%. If the second key is pressed, we decrease the brightness by 10% and make sure it doesn't go below 0%. - We then calculate the new brightness values for the red, green, and blue channels based on the overall brightness value. The red brightness is set to the overall brightness, the green brightness is set to the complement of the overall brightness, and the blue brightness is set to a scaled version of the difference between the overall brightness and 50%. - Finally, we set the PWM duty cycles for the red, green, and blue channels using the `write()` method of the `PwmOut` class, and wait for a short time before starting the loop again. I hope this helps! Let me know if you have any questions.

In python,write a program with giving: Three DNA strings in DNA.txt fileReturn: for each sequence1) the complementary strand .2) GC content.And store the output in the same file using attach model.

Sure, here's a Python program that reads three DNA strings from a file named "DNA.txt", calculates their complementary strands and GC content, and writes the output back to the same file: ```python # Open the input file for reading with open("DNA.txt", "r") as f: # Read the three DNA strings seq1 = f.readline().strip() seq2 = f.readline().strip() seq3 = f.readline().strip() # Define a function to calculate the complementary strand of a DNA sequence def complementary_strand(seq): complement = "" for base in seq: if base == "A": complement += "T" elif base == "T": complement += "A" elif base == "C": complement += "G" elif base == "G": complement += "C" return complement # Define a function to calculate the GC content of a DNA sequence def gc_content(seq): gc_count = seq.count("G") + seq.count("C") return gc_count / len(seq) * 100 # Calculate the complementary strands and GC content of the three DNA sequences comp_seq1 = complementary_strand(seq1) comp_seq2 = complementary_strand(seq2) comp_seq3 = complementary_strand(seq3) gc_seq1 = gc_content(seq1) gc_seq2 = gc_content(seq2) gc_seq3 = gc_content(seq3) # Open the file again for writing (this will overwrite the previous content) with open("DNA.txt", "w") as f: # Write the original sequences, their complementary strands, and their GC content f.write(f"Sequence 1:\n{seq1}\nComplementary strand:\n{comp_seq1}\nGC content: {gc_seq1:.2f}%\n\n") f.write(f"Sequence 2:\n{seq2}\nComplementary strand:\n{comp_seq2}\nGC content: {gc_seq2:.2f}%\n\n") f.write(f"Sequence 3:\n{seq3}\nComplementary strand:\n{comp_seq3}\nGC content: {gc_seq3:.2f}%\n\n") ``` Note that this program assumes that the input file "DNA.txt" contains three DNA sequences, each on a separate line, with no additional whitespace. It also assumes that the output should be appended to the end of the file, rather than replacing its previous content. If you want to replace the content, change the second `open` call to use the mode `"w"` instead of `"a"`.

相关推荐

最新推荐

recommend-type

什么是mysql安装配置教程以及学习mysql安装配置教程的意义

mysql安装配置教程
recommend-type

【光伏预测】基于BP神经网络实现光伏发电功率预测附Matlab代码.zip

1.版本:matlab2014/2019a/2021a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
recommend-type

onlyoffice搭建及与alist使用的view.html

onlyoffice搭建及与alist使用的view.html
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】增量式PID的simulink仿真实现

# 2.1 Simulink仿真环境简介 Simulink是MATLAB中用于建模、仿真和分析动态系统的图形化环境。它提供了一个直观的用户界面,允许用户使用块和连接线来创建系统模型。Simulink模型由以下元素组成: - **子系统:**将复杂系统分解成更小的、可管理的模块。 - **块:**代表系统中的组件,如传感器、执行器和控制器。 - **连接线:**表示信号在块之间的流动。 Simulink仿真环境提供了广泛的块库,涵盖了各种工程学科,包括控制系统、电子和机械工程。它还支持用户自定义块的创建,以满足特定仿真需求。 # 2. Simulink仿真环境的搭建和建模 ### 2.
recommend-type

训练集和测试集的准确率都99%,但是预测效果不好

即使训练集和测试集的准确率都很高,但是在实际的预测中表现不佳,可能会有以下几个原因: 1. 数据质量问题:模型训练和测试的数据可能存在问题,比如数据标签错误、数据集采样不均衡、数据集中存在异常值等问题,这些问题可能会导致模型在实际预测中表现不佳。 2. 特征工程问题:模型的特征工程可能存在问题,导致模型无法很好地捕捉数据的特征,从而影响预测效果。 3. 模型选择问题:模型的选择可能不合适,比如选择的模型太简单,无法很好地拟合数据,或者选择的模型太复杂,导致过拟合等问题。 4. 超参数调整问题:模型的超参数可能没有调整到最佳状态,需要进行调整。 针对以上可能的原因,可以采取相应的措施进
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】MATLAB simulink船舶动力定位模拟器

# 1. MATLAB Simulink 简介** MATLAB Simulink 是 MathWorks 公司开发的一款图形化建模和仿真软件,广泛应用于工程、科学和教育领域。它提供了丰富的模块库和仿真环境,使工程师能够快速构建和仿真复杂系统。 Simulink 的核心概念是基于块状图建模,其中每个模块代表一个特定的功能或组件。用户可以通过拖放模块并连接它们来创建系统模型。Simulink 提供了广泛的模块库,涵盖了信号处理、控制系统、动力学和通信等领域。 此外,Simulink 还支持自定义模块开发,允许用户创建自己的模块来扩展其功能。这使得 Simulink 成为一个高度灵活的仿真平