使用pytorch生成一段代码用于碳交易价格预测,其中包含lstm模型,输入的特征有5个
时间: 2023-03-29 16:02:34 浏览: 145
你好,关于使用 PyTorch 生成一段代码用于碳交易价格预测,其中包含 LSTM 模型,输入的特征有 5 个,我可以给你提供以下的代码示例:
```python
import torch
import torch.nn as nn
class LSTMModel(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, output_size):
super(LSTMModel, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
h = torch.zeros(self.num_layers, x.size(), self.hidden_size).to(device)
c = torch.zeros(self.num_layers, x.size(), self.hidden_size).to(device)
out, _ = self.lstm(x, (h, c))
out = self.fc(out[:, -1, :])
return out
input_size = 5
hidden_size = 64
num_layers = 2
output_size = 1
model = LSTMModel(input_size, hidden_size, num_layers, output_size)
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=.001)
# train the model
for epoch in range(num_epochs):
for i, (inputs, labels) in enumerate(train_loader):
inputs = inputs.to(device)
labels = labels.to(device)
# forward pass
outputs = model(inputs)
loss = criterion(outputs, labels)
# backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
# predict
with torch.no_grad():
inputs = test_data.to(device)
outputs = model(inputs)
predicted = scaler.inverse_transform(outputs.cpu().numpy())
```
以上是一个简单的 LSTM 模型,其中包含了 5 个输入特征,可以用于碳交易价格的预测。需要注意的是,这只是一个示例代码,具体的实现需要根据具体的数据集和需求进行调整和优化。
阅读全文