VGG16模型python代码
时间: 2023-10-15 13:07:23 浏览: 92
以下是使用Keras框架实现VGG16模型的Python代码:
```python
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
model = Sequential()
# 第一段卷积层
model.add(Conv2D(64, (3, 3), activation='relu', padding='same', input_shape=(224, 224, 3)))
model.add(Conv2D(64, (3, 3), activation='relu', padding='same'))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
# 第二段卷积层
model.add(Conv2D(128, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(128, (3, 3), activation='relu', padding='same'))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
# 第三段卷积层
model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
# 第四段卷积层
model.add(Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
# 第五段卷积层
model.add(Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
# 全连接层
model.add(Flatten())
model.add(Dense(4096, activation='relu'))
model.add(Dense(4096, activation='relu'))
model.add(Dense(1000, activation='softmax'))
# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
```
这个代码实现了VGG16模型的结构,其中包括5个卷积层和3个全连接层。在编译模型时,使用了Adam优化器和交叉熵损失函数。
阅读全文